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Abstract: The paper presents an approach to modelling in secondary schools where 
technological instruments are used for measuring and modelling motion ex-
periences. In all cases one or more sensors measure various quantities and are 
connected to a calculator. In some examples we study pupils (9-th grade) 
who run in the class and see the Cartesian representation of their movement 
produced by a sensor in real time. In others, pupils (11-13-th grade) go on 
switchbacks or other similar merry-go-rounds and use instruments to measure 
some quantities (speed, acceleration, pressure), which are recorded on graphs 
and tables. In both cases, pupils discuss what has happened and interpret the 
collected data. Within a general Vygotskian frame, the authors use different 
complementary tools to analyse the situations: the embodied cognition by 
Lakoff and Núñez, the instrumental approach by Rabardel, the definition of 
concept by Vergnaud. In particular the role of the perceptual-motor activity 
in the conceptualisation of mathematics through modelling is stressed. 

1. THE THEORETICAL FRAMEWORK 

It is well known that pupils have difficulties in conceptualising the func-
tion concept. According to the current research, their difficulties concentrate 
in interpreting graphs, particularly those in which a variable is time-
dependent, as for example space-time or velocity-time graphs. In fact, two 
main misinterpretations have been pointed out in the literature. One is the 
graph-as-picture interpretation, in which students expect the graph to be a 
picture of the phenomenon described. In kinematics, this can result in the 



2 Chapter 3.1.1 
 

students interpreting a graph of space versus time as if it were a road map, 
with the horizontal axis representing one direction of the motion rather than 
representing the passage of time (Clement, 1989). Another common misin-
terpretation is the slope/height confusion, in which students use the height of 
the graph at one point, when they should use the slope of the line tangent to 
the graph at a point, and vice-versa. 

To overcome such difficulties, we have designed a teaching project 
where the function concept can be approached within suitable experience 
fields (Boero et al., 1995b) so that its meaning can be built up by students in 
a proper way. To this end, we use a motion sensor and a symbolic-graphic 
calculator, with which students create graphs and number tables to model 
different kinds of motion (either of their body or of other objects). The di-
dactical aim of the teaching experiment is the construction of the concept of 
function as a tool for modelling motion. Our particular goal with these ac-
tivities is that the students can reach competencies in describing mathemati-
cally a function, both from a global and a local point of view, starting from 
their perceptions and experiences with the sensor. At a more advanced level, 
they can use such competencies to interpret more complex situations, e.g. the 
motion on a switchback. 

The research aim is the analysis of students’ cognitive processes involved 
in the construction of meanings for the mathematical objects, through model-
ling representations. Specifically, our investigations focus on their mental 
dynamics while they interpret the different representations of data (tables, 
graphs) in order to grasp their meaning with respect to the concrete experi-
ment of motion. This analysis is made by the observation of all the students’ 
activities, including their gestures, language, and interactions with the in-
struments.  

Hence our research can be framed within the challenge of Issue 1 of the 
Discussion Document. Specifically, it makes some contribution to the fol-
lowing questions: 
- What are the processes of modelling? What is meant by or involved in 

each? 
- What is the meaning and role of abstraction, formalisation and generali-

sation in applications   and modelling? 
- How much extra-mathematical context must be familiar and understood 

to undertake applications and modelling? 
The general framework of our research is Vygotskian: the emphasis is on 

the social construction of knowledge and on the semiotic mediation given by 
cultural artefacts (Bartolini Bussi et al., 1999). The social dimension is given 
by the recourse to the ‘mathematical discussion’, orchestrated by the teacher 
(Bartolini Bussi, 1996); the artefacts are represented by the symbolic-graphic 
calculators, by the sensors and by the switchbacks.   
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To describe the crucial cognitive aspects of pupils’ learning processes in 
interaction with technological instruments, we use three analysis tools:  
- The embodied cognition approach by Lakoff & Núñez (2000) (see also: 

Arzarello, 2000a; Arzarello et al. 2003); 
- The instrumental analysis by Rabardel (1995) and others (Artigue, 2001, 

Vérillon et al., 1995); 
- The definition of concept given by G.Vergnaud (1990)1, in particular the 

notion of operating invariant. 
We think it is possible to integrate the instrumental approach with new 

results from cognitive science, in particular embodied cognition. These two 
approaches help us to analyse the students’ activities from a new point of 
view. In fact, if the instrumental approach can give us a framework to ana-
lyse the use of technologies by students, in terms of schemes of use, it is not 
sufficient for interpreting their mental activities, especially during the con-
ceptualisation processes. On the other hand, cognitive science is perfectly 
aimed to study pupils’ mental activities; however, its approach to conceptu-
alisation processes in mathematics focuses on some fundamental aspects but 
does not explain all of the theoretical and symbolic features of the mathe-
matical thinking. Hence we find it useful to embed our analysis within the 
framework of Vergnaud’s definition of concept.  

2. THE TEACHING EXPERIMENTS 

A main problem for students who are requested to interpret graphs or 
numerical tables (which model situations) regards their static features (see 
Kieran, 1994; Boero et al., 1995a), which risk blocking their mental dynam-
ics, hence inhibiting a fruitful exploration (Boero et al., 1995b). In fact, to 
cognitively grasp the meaning of a function one needs complex dynamic ac-
tivities; for example so called fictive motion (Talmy, 1996), produced when 
the subject interprets a graph in a dynamic and oriented way, as if it were 
produced by a moving trajector. Such an activity can be observed through 
the words and gestures of subjects (see Lakoff & Núñez, 2000, pp. 31 and 
37). From this point of view it is interesting to observe how a graph is gener-
ated on the screen of a graphic calculator, which represents data on-line 
measured by a sensor (CBR2). The observer looks at a genuinely oriented 
generation of the points in time, which is a sensibly different experience 
from perceiving a graph given in a holistic way. Such a dynamic graph is 
easier to interpret by subjects, when compared with a static one. This is the 
starting point for our first working hypothesis: suitable fields of experience 
(see Boero et al., 1995a) where students experience real and fictive motions, 
can support pupils while interpreting graphs. Such a field is our "Real data in 
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real time", where pupils live some concrete experience (e.g., running); in the 
meanwhile some data are relived by an on-line measurement tool and repre-
sented in real time on the screen of a graphic calculator. Successively, pupils 
are asked to interpret the graphs and tables on the screen, exploiting what 
these mean with respect to their lived experience. In the end they are asked 
to analyse some of their specific features and to represent them using suita-
ble algebraic language. Our second working hypothesis is that body, lan-
guage, and instruments mediate and support the transition of students from 
the perceptual facts to the symbolic representation, e.g. the algebraic one: in 
fact they can stimulate the production of an intense cognitive activity, which 
is marked by rich language and gesturing activity, for example with produc-
tion of grounding metaphors. The purpose of our proposal is to describe the 
development of students' cognitive activities from bodily (e.g. perceptual, 
kinetic,..) to theoretical features. In such a development a crucial point is the 
genesis of the meaning for mathematical objects through modelling activities 
exploiting temporal explorations towards their just past experience and antic-
ipating hypothesis and conjectures. Words and gestures reveal crucial in-
sights within this activity; in particular language provides students with a 
fruitful cognitive activity based on their just lived kinetic and visual experi-
ences. This genetic process allows students: (i) to produce a mathematical 
sense for the graphs they see on the screen and (ii) to start and support their 
transition to the algebraic register. For a wider discussion see the Research 
Forum at PME 27 (Nemirowski et al., 2003). 

The teaching experiment is organised as a long-term intervention of ac-
tivities during the year, each activity lasting for two-three one hour class ses-
sions, and possibly including some open air activity, e.g. going on switch-
backs in a funfair. During the sessions the students work in groups of three-
four pupils and they use the tools of the activity (e.g. a measure instrument 
or a graphic calculator or a sheet of paper). In each activity they have to an-
swer some questions on a working proposal form, related to the construction 
of the meaning of a mathematical object. The researcher, who is present dur-
ing the activity has the role of observer (she records everything with a video-
camera) and guides the final discussion.  

3. SOME EXAMPLES OF MODELLING ACTIVI-
TIES  

3.1 Example 1 

The experiment, organised by O. Robutti, consists in a sequence of acti-
vities scheduled as follows: 
1. Analysing a graph and answering some questions about the points and 
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their co-ordinates; 
2. measuring the length of objects with different tools (ruler, meter, …) and 

finding regularities; 
3. representing data in tables or graphs using a graphic calculator (a TI92, 

by Texas Instruments); 
4. reliving time and distance data by using a sensor of position and analys-

ing the collected data on the graph and in the table of the calculator 
screen (fig.1); 

5. constructing models of a phenomenon, knowing the rate of change of a 
quantity vs. time; 

6. measuring data of a variable quantity vs. time and modelling the phe-
nomenon. 
Each activity is divided into three parts: in the first, the students (in small 

groups) explore a situation (using a proper tool or by paper and pencil); in 
the second the groups answer some written questions which ask them to 
use/build suitable data representations (tables, graphs) to interpret the situa-
tion in a mathematical way (within a pencil and paper or calculator environ-
ment);  in the third and final part, the students participate in a class discus-
sion, guided by a researcher.  

3.2 Example 2 

In our students’ schools mathematics and physics are both taught by the 
same teacher. The idea here is to design activities within the pupils’ field of 
experience “Real data in real time” and to use sensors to collect data on 
some physical quantities (speed, acceleration, pressure) while riding on a 
switchback or some similar machine, and then to use graphical and numeri-
cal representations to discuss the model so obtained. The goal is for pupils to 
enter more and more deeply into the physical concepts experienced while 
going on the machines, using the mediation of the mathematical model rep-
resented on the screen of the computer. The experiment is conceived with 
the same philosophy as that above, but requires more mathematical 
knowledge: in fact pupils are 2 – 3 years older than in the previous case. 
This part of the experiment has been designed by G. Pezzi and his equipe in 
Faenza. Fig.3.1.1-1 (next page) shows the sensor-kit organised to measure 
the physical quantities (courtesy of Texas Instruments): the kit is assembled 
in a bag, which can be fastened to the experimenter’s body or directly to the 
machine. Fig. 3.1.1-3 illustrates one of the machines (the Thunder Sierra): it 
is a switchback with a height difference of 32.5 m, whose structure and in-
teresting aspects are sketched in Fig.3.1.1-2. 

Using pressure measures, a profile of the road has been drawn. Moreover 
an accelerometer has been used to record data concerning the acceleration of 
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the coach: the diagrams (Fig. 3.1.1-4) have been obtained using the program 
Graphical Analysis 3.0, using the smoothing function in order to eliminate 
the noise from the acceleration graphics. 

 

Figure 3.1.1-1. Sensor kit 

 

Figure 3.1.1-2. Structure of Thunder Sierra 
 

 

Figure 3.1.1-3. Thunder Sierra 

 

Figure 3.1.1-4. Graphical analysis 

4.  SOME PARTIAL CONCLUSIONS 

The written protocols of all the students show that most of them have 
good linguistic production and a flexible co-ordination among different reg-
isters: verbal, graphical, algebraic. Moreover there is an interesting genesis 
of the mathematical concepts through metaphors, fictive motion and manag-
ing of the inner times (Varela, 1999; Arzarello et al., 2001). We can observe 
this intense cognitive activity through their gestures and linguistic produc-
tions. 

It is interesting to observe that the students’ cognitive activity passes 
through a complex evolution, which starts with their bodily experience; goes Fig.1 

Fig
.1 
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on with the evocation of the just lived experience through gestures and 
words; continues by connecting it with the data representation; and culmi-
nates with the use of algebraic language to write down the relationships be-
tween the quantities involved in the experiment. The recalling process has a 
double nature: from the one side words and gestures start the generative ac-
tion function towards a suitable representation of what they have done (i.e. 
with tables, graphs, functions); from the other side, it allows a meaningful 
interiorisation of their experience. In fact, there is dialectic between mathe-
matical concepts (for example, a function), and their representations (for ex-
ample, its graph), which develops through the generative action function 
supported by language and gestures. 

Some didactical conclusions can be drawn from our experience and may 
possibly be confirmed by the research, which is going on in the meanwhile. 
a) The approach to functions in the school often inhibits or curtails experi-
ences that encourage the productions of fictive motions schema. For exam-
ple, the graphs in books and exercises generally have a static and holistic 
aspect. But new technology allows teachers to design experiences where 
graphs can be presented in a dynamical and genetic way. b) Using grounding 
metaphors seems to facilitate such functions as the generative and generalis-
ing ones, which can support students in the transition to a meaningful man-
aging of algebraic language. In fact metaphors are based on common cogni-
tive activities that all people can do. However, grounding metaphors may be 
not always appreciated in the class of mathematics, since they have not a 
rigorous flavour. On the contrary, encouraging their production by students 
can facilitate the understanding of formal aspects of mathematics. As a by-
product, our findings suggest that a genetic structure appears in the way met-
aphors are produced, which intertwines deeply with inner times of pupils. 
Their cognitive activity shows a continuous dynamic movement from the 
present to the past (their lived experience) and to the future (the hypothesis 
or the de-timed sentences). The analysis of connections between inner times, 
rhythms and metaphors reveals investigations in Mathematics Education as a 
promising field from the point of view of research (genesis of mathematical 
objects), as well as practice (which cognitive activities can the teacher en-
courage to facilitate pupils’ understanding of mathematics?).  
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