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Abstract: From preliminary analysis of teacher-nominated examples of successful technology-
supported practice in secondary-school mathematics, the use of graphing software to teach about 
algebraic forms was identified as being an important archetype. Employing evidence from lesson 
observation and teacher interview, such practice was investigated in greater depth through case 
study of two teachers each teaching two lessons of this type. The practitioner model developed in 
earlier research (Ruthven & Hennessy, 2002; 2003) provided a framework for synthesising teacher 
thinking about the contribution of graphing software. Further analysis highlighted the crucial part 
played by teacher prestructuring and shaping of technology-and-task-mediated student activity in 
realising the ideals of the practitioner model. Although teachers consider graphing software very 
accessible, successful classroom use still depends on their inducting students into using it for 
mathematical purposes, providing suitably prestructured lesson tasks, prompting strategic use of the 
software by students, and supporting mathematical interpretation of the results. Accordingly, this 
study has illustrated how, in the course of appropriating the technology, teachers adapt their 
classroom practice and develop their craft knowledge: particularly by establishing a coherent 
resource system that effectively incorporates the software; by adapting activity formats to exploit 
new interactive possibilities; by extending curriculum scripts to provide for proactive structuring 
and responsive shaping of activity; and by reworking lesson agendas to take advantage of the new 
time economy. 
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1. Introduction 
 

This paper develops a line of research on the incorporation of computer-based tools and resources 
into the mainstream practice of mathematics teaching in secondary schools. This line began by 
building a generic model of what teachers regard as successful practice (Ruthven & Hennessy, 
2002; 2003), drawing on decontextualised accounts elicited through group interviews with 
mathematics departments. A subsequent project has sought out and examined professionally well-
regarded mainstream practice in secondary mathematics and science teaching, drawing on more 
strongly contextualised accounts of specific instances of particular types of technology-supported 
practice, supported by examination of actual classroom events. This paper reports a study of 
teaching practice incorporating use of graphing software; another study has examined dynamic 
geometry (Ruthven, Hennessy & Deaney, 2005; 2008). 
 
2. A practitioner model of the contribution of technology use to teaching mathematics 
 

The earlier research addressed the broad question of how teachers – specifically mathematics 
teachers in English secondary schools – conceive the incorporation of computer-based tools and 
resources into their classroom lessons. Drawing on teachers’ accounts of successful practice, this 
work developed a ‘practitioner model’ (Ruthven & Hennessy, 2002) which was refined into a more 
compact form (Ruthven & Hennessy, 2003) in the light of cross-subject comparison (Ruthven, 
Hennessy & Brindley, 2004). The themes in this model highlight the contribution of digital tools 
and resources to: 
• Effecting working processes and improving production, notably by increasing the speed and 

efficiency of such processes, and improving the accuracy and presentation of results, so 
contributing to the pace and productivity of lessons;  
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• Supporting processes of checking, trialling and refinement, notably with respect to checking 
and correcting elements of work, and testing and improving problem strategies and solutions; 

• Overcoming pupil difficulties and building assurance, notably by circumventing problems 
experienced by pupils when writing and drawing by hand, and easing correction of mistakes, 
so enhancing pupils’ sense of capability in their work; 

• Focusing on overarching issues and accentuating important features, notably by effecting 
subsidiary tasks to support attention to prime issues, and facilitating the clear organisation and 
vivid presentation of material; 

• Enhancing the variety and appeal of classroom activity, notably by varying the format of 
lessons and altering their ambience by introducing elements of play, fun and excitement and 
reducing the laboriousness of tasks; 

• Fostering pupil independence and peer exchange, notably by providing opportunities for 
pupils to exercise greater autonomy and responsibility, and to share expertise and provide 
mutual support. 

 

Subsequent research has offered collateral support for the model. An independent Paris study 
(Caliskan-Dedeoglu, 2006; Lagrange & Caliskan-Dedeoglu, in press) found that the original version 
of the model provided a useful template to describe teachers’ pedagogical rationales for the 
classroom use of dynamic geometry. However, when teachers were followed into the classroom it 
became clear that these rationales sometimes proved difficult to realise in the lessons themselves. 
Teachers could be overly optimistic about the ease with which students would be able to use the 
software. Far from effecting working processes and overcoming pupil difficulties, computer 
mediation might actually impede student actions, with the teacher trying to retrieve the situation by 
acting primarily as a technical assistant. Likewise, students could encounter difficulties in relating 
the figure on the computer screen to its paper-and-pencil counterpart. Rather than accentuating 
important features, computer mediation might actually mask them. This serves to emphasise that 
while the model identifies the types of ‘normal desirable state’ which teachers associate with 
successful technology use, actually achieving such success depends on creating classroom 
conditions and pursuing teaching actions which establish and maintain these states (Brown & 
McIntyre, 1993). Certainly in a parallel Cambridge study of classroom practice in using dynamic 
geometry, teachers were found to have developed strategies to anticipate, avoid and overcome such 
potential obstacles (Ruthven et al. 2005). What these studies emphasise, then, is that the model 
represents a guiding ideal for teachers. To be able to realise this ideal in practice depends on 
teachers developing craft knowledge to underpin their desired classroom use of new technologies. 
 

The term ‘craft knowledge’ refers to the largely reflex system of situated expertise which teachers 
develop, tailored to their professional role and embedded in their classroom practice (Brown & 
McIntyre, 1993; Leinhardt, 1988). Compared to the more decontextualised and rationalistic 
approach to characterising a ‘professional knowledge base for teaching’ in which the ‘represen-
tations of [subject] knowledge in teaching’ associated with ‘pedagogical content knowledge’ are 
highlighted (Wilson, Shulman & Richert, 1987), the craft perspective focuses on the functional 
organisation of a broader range of teacher knowledge to accomplish concrete professional tasks. In 
particular, it recognises that much innovation calls for adaptation of craft knowledge with respect to 
key structuring features of classroom practice such as working environment, resource system, 
activity format, curriculum script, and time economy (Ruthven, 2007; in press). The use of new 
technologies often involves changes in the working environment of lessons in terms of room 
location, physical layout, and class organisation (Jenson & Rose, 2006), requiring modification of 
the classroom routines which enable lessons to flow smoothly (Leinhardt, Weidman & Hammond, 
1987). Equally, while new technologies broaden the range of tools and resources available to 
support school mathematics, they present the challenge of building a coherent resource system 
(Amarel, 1983) of compatible elements that function in a complementary manner and which 
participants are capable of using effectively. Likewise, innovation may call for adaptation of the 
established repertoire of activity formats that frame the action and interaction of participants during 
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particular types of classroom episode (Burns & Anderson, 1987; Burns & Lash, 1986), and combine 
to create prototypical activity structures or cycles for particular styles of lesson (Monaghan, 2004). 
Moreover, incorporating new tools and resources into lessons requires teachers to develop their 
curriculum script for a mathematical topic. This ‘script’ – in the psychological sense – is an event-
structured organisation of variant expectancies for the lesson and of alternative courses of action, 
forming a loosely ordered model of goals, resources and actions for teaching the topic (Leinhardt, 
Putnam, Stein & Baxter, 1991); it interweaves mathematical ideas to be developed, appropriate 
topic-related tasks to be undertaken, suitable activity formats to be used, and potential student 
difficulties to be anticipated, guiding the teacher in formulating a particular lesson agenda, and in 
enacting it in a flexible and responsive way. Finally, teachers operate within a time economy in 
which they seek to improve the ‘rate’ at which the physical time available for classroom activity is 
converted into a ‘didactic time’ measured in terms of the advance of knowledge (Assude, 2005). 
 
3. Research on teaching practices incorporating use of graphing technology 
 

Software for mathematical graphing on the coordinate plane was amongst the earliest computer 
applications developed for professional and educational use. From the start, mathematics educators 
have seen such software as having more than just a pragmatic, computation-effecting function in 
translating symbolic expressions (such as coordinates and equations) into graphic images (such as 
points, lines and curves); but as also having an epistemic, concept-building function, through 
supporting exploration of symbolic-graphic relationships. In an early survey, Fey (1989, p. 247) 
noted that “suggestions of ways to use such graphs [as pictures of algebra] have appeared in many 
places and the software tools available to facilitate graphing are really quite versatile and easy to 
use”. He indicated that, for teaching purposes, graphing software was typically first used to display 
series of graphs as a means of revealing the patterns associated with various rule types and the 
significance of parameters within each type. He reported that it was then common to ask students to 
generate rules to match a given graph or to fit given points; here Fey referred to the success of a 
piece of educational software which placed such tasks within a game format.  
 

Over the course of the 1990s, several pioneering studies investigated aspects of teacher thinking and 
classroom practice in using graphic calculators at upper secondary level. The study with concerns 
most similar to those of this paper was conducted by Simmt (1997) who examined the beliefs and 
practices of teachers introducing the use of graphing calculators into a unit on quadratic functions. 
The machines were used primarily to generate patterns of graphic images; most commonly by 
students themselves; and in the majority of cases through a guided-discovery approach which some 
teachers reported as made possible only through use of the technology. The reasons that the 
teachers gave for using graphing technology related principally to saving lesson time and generating 
more examples, and to increasing instructional variety and enhancing student motivation, 
corresponding respectively to the Effecting working processes and improving production and 
Enhancing the variety and appeal of classroom activity themes of the practitioner model. In the 
majority of cases, teachers considered the calculator valuable as a tool for checking students’ 
sketches or manipulations, relating to the theme of Supporting processes of checking (but 
apparently with little trialling and refinement involved). One teacher mentioned aspects of 
Overcoming pupil difficulties and building assurance in reporting that using the calculator 
increased students’ confidence in the accuracy of their graphs, and that this enabled them to work 
with less dependence on the teacher, in line with Fostering pupil independence (but without 
reference to peer exchange). Finally, some teachers expressed concern about limitations of 
calculator graphing in respect of the frequent need to adjust the graphing window and to interpret 
approximate coordinate values, so qualifying the perceived contribution of this technology to an 
ideal of Focusing on overarching issues and accentuating important features. 
 

Other studies throw more oblique light on the concerns of this paper. Farrell (1996) studied the 
classroom practice of teachers nearing the end of their first year of involvement in a development 
project in which they were working with teaching materials to which use of graphing technology 
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was integral. The study concluded – with appropriate caution – that technology use helped to create 
conditions under which it became possible – but not inevitable – for formats for classroom activity 
to shift towards less teacher exposition and more student investigation and group work, providing 
greater scope for both teacher and students to take on explainer, consultant, and co-investigator 
roles. Doerr & Zangor (2000) studied the practice of a teacher who was very experienced in 
graphing calculator use. The main findings relate to typical modes of classroom calculator use, as 
modelled and encouraged by the teacher, and grounded in her broader instructional approach: as 
computational tool, transformational tool, data collection and analysis tool, visualizing tool, and 
checking tool. Although this study has a strong pedagogical focus, the idea of graphing calculators 
as media for developing and deploying variant mathematical strategies also emerges as important: 
strategies differing markedly from those already recognised, and strongly dependent on distinctive 
affordances of the new tools, such as solving equations graphically or numerically rather than 
analytically. This idea is absent from, or marginal in, the other studies discussed here (for example, 
being generally rejected by the teachers participating in Simmt’s study). 
 

Over the last few years, the use of graphing technology has become more widespread and 
commonplace, notably moving down from relatively advanced courses to earlier levels of 
secondary education. However, the teacher thinking and classroom practice associated with wider 
use appear to have received little attention from researchers. Moreover, few studies at any level 
have been conducted outside North America, and few have examined the use of graphing software 
as against graphic calculators. The study to be reported in this paper addresses all these aspects of 
underinvestigation in the field. It complements Godwin & Sutherland’s (2004) study which 
compared two lessons taught by teachers involved in an initiative to develop classroom use of new 
technologies. In one lesson, graphic calculators supported work on straight line graphs; in the other 
graphing software provided a means of studying quadratic graphs. Describing the unfolding 
teaching sequences in each lesson, Godwin & Sutherland’s paper emphasises the way in which 
teachers played “a vital role in orchestrating and structuring classroom activities in such a way as to 
support students to focus attention on appropriate mathematical ideas” (p. 132) and the way in 
which this creates “an emergent and collective… community… in which knowledge construction 
converges to some acceptable ‘common knowledge’” (p. 150). In particular, they note how, in both 
lessons, teachers introduced critical attributes of the graph types through considering a succession 
of parameterised sub-families, with the graphing technologies used to give students the power to 
experiment with many members of each sub-family within a relatively short period of time. Our 
study complements this work by incorporating a stronger teacher perspective into the overall 
analysis of technology-supported classroom practice, and by extending analysis of the specific 
handling of graph types to bring out the interaction between technological affordances, task designs, 
and teaching actions. 
 
4. Design and method for the study 
 

In the first phase of the larger research project from which this study derives, recommendations 
from professional leaders and evaluations from school inspections were triangulated in order to 
identify subject departments in state-maintained schools that were regarded as successful both in 
terms of the general quality of their practice and their use of computer-based tools and resources 
within it. To ascertain what practitioners themselves regarded as successful practice, focus group 
interviews were then conducted with each of these subject departments (during the latter part of the 
2002/03 school year). In these interviews teachers were invited to nominate and describe examples 
of successful practice involving use of computer-based tools and resources. Through this process, 
several practices were selected for more intensive investigation in the second phase of the research 
through conducting case studies (during the 2003/04 school year). 
 

From the focus group interviews with eleven mathematics departments, use of graphing technology 
was identified as a successful established practice, favourably mentioned in all the departments, and 
selected as a nominated example in seven, with graphing software generally preferred over graphic 
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calculators. However, outside advanced courses, use of this technology still proved relatively 
infrequent, occurring on no more than a handful of occasions per school year with any particular 
class. The particular mathematical topics which were most frequently cited were linear equations 
(nominated in six departments, and mentioned in four more) and quadratic equations (nominated in 
only one department, but mentioned in four more, all of which nominated linear equations). The use 
of graphing technology to treat such equations also featured prominently in official curricular and 
pedagogical guidance (DfEE, 2001; DfES, 2003), and lessons of this type were cited favourably, 
both in reports of individual school inspections, and in a national report on the impact on secondary 
mathematics of government ICT initiatives in schools (OfStEd, 2004: p. 7). A further index of the 
archetypicality of this practice was provided when one department (which had nominated it as an 
example) volunteered that for their forthcoming professional development session on ICT in math-
ematics teaching they had “specifically asked for it to be not drawing graphs and straight lines”! 
 

Available project resources made it feasible to follow up only a limited number of cases of each 
practice. Given that there were relatively few differences in the forms of graphing practice that 
teachers described, and that graphing software (rather than graphic calculator) was clearly teachers’ 
preferred technology, we followed up two cases of this type which provided some degree of 
contrast in approach, located in schools in different regions of England. Other important consid-
erations were that the teachers concerned had already provided quite full and thoughtful accounts 
during the focus group interviews, and that two lessons could be observed with each teacher, one on 
linear forms and the other on quadratic. Detailed observation records were made of each lesson, 
incorporating a transcript of the main episodes, integrated with further observational material 
including copies of other resources used and records of the graphs displayed. Post-lesson interviews 
were conducted with teachers after each observed session. These were organised around a standard 
sequence of printed cards asking teachers about their thoughts, first while preparing the lesson 
(what they wanted pupils to learn; how they expected use of the technology to help pupil learning); 
then looking back on the lesson (how well pupils learned; how well the technology helped pupil 
learning; important things that they were giving attention to and doing). At the end of the first 
interview, teachers were also asked about any pitfalls that they had experienced in using graphing 
technology. At the end of the second interview, they were invited to suggest any ways in which 
their approach differed between the two lessons. These interviews were audiotaped and transcribed. 
 

The subsequent process of analysis was in three stages. First, the file for each lesson was analysed 
in the following ways, providing the basis for assembling a summary of the lesson, focusing 
specifically on the teaching practice and practitioner thinking associated with it. From the obser-
vation record, occasionally amplified by illuminating material from the interview transcript, a basic 
outline of the working environment, resource system, lesson agenda, and activity structure of the 
lesson was compiled. From the interview transcript, occasionally amplified by illuminating material 
from the observation record, a narrative was constructed to set out the main lines of thinking that 
teachers reported as lying behind the lesson and emerging in response to it. Here, to provide a 
common core of organising constructs, the broad themes from the compact version of the earlier 
‘practitioner model’ (Ruthven & Hennessy, 2003) were used as appropriate, but the narratives 
themselves drew directly on the source material, going beyond the earlier themes where necessary 
(Strauss & Corbin, 1994). These lesson summaries are presented in Boxes 1 to 4, and sketch the 
classroom practice observed in each lesson and the teacher thinking associated with it (with the 
indexing of segments used to facilitate later cross referencing from this main text). Second, an 
analysis was conducted across lessons and teachers, again organised in terms of the earlier 
practitioner themes and elaborating them where necessary, to produce a model of this technology-
supported teaching practice, grounded in the teacher accounts and teacher actions captured in the 
evidence base. Third, sensitised by the earlier literature review and by wider theory in the field to 
aspects of the teaching practice which remained largely tacit in this model, some further key issues 
–concerned with instrumental induction, task design, teacher intervention, and craft knowledge – 
were examined, drawing more reflectively on the case files to extend the earlier analysis.  
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Box 1: Lesson summary A1 – Investigating linear forms 
[1] This one-hour lesson involved a Year 10 (Grade 9) 
class of lower-attaining students. Students were seated 
individually at a machine (after initial difficulties in 
finding usable ones) and a computer was available to 
the teacher, but with its projector not functioning at the 
start of the lesson.  
[2] The resource system for the lesson consisted of a 
teacher-devised sequence of worksheets involving use 
of graphing software. The absence of the projector 
forced the teacher towards less efficient methods of 
guiding students how to access the software and 
introducing the techniques needed for the lesson:   

Not having it there meant that I had to go round much more on an 
individual basis and say “Right, you need to grab that hand if you 
want to pull the graph down.” If I’d had the projector there, it 
would have been much easier to show the whole class at once. 

[3] The lesson agenda followed the sequence of 
worksheet tasks. Each task involved using the software 
to generate specified members of a family of graphs (of 
the forms y = c, x = c, y = x + c, y = mx; for example y = 
x + 2, y = x + 4, y = x – 1,  y = x – 3), recording these 
graphs on the worksheet, then completing a statement or 
answering a question designed to highlight their generic 
characteristics. 
[4] Over most of the lesson, the activity format 
alternated between short bursts of whole-class, teacher-
led exposition and questioning to quickly prefigure or 
review a worksheet task, and more extended periods of 
individual student work on these tasks with the teacher 
circulating to provide guidance and support. This 
formed an activity cycle covering each task in turn. The 
lesson concluded with a 15-minute plenary, reviewing 
and elaborating findings through teacher-led 
presentation and questioning. 
[5] In preparing the lesson, a prime concern of the 
teacher had been to secure the active engagement of 
students. The interactive character of work with a 
computer and the requirement to record results on the 
worksheet were both intended to help achieve this:  

I wanted something that was going to engage the pupils actively, 
so I gave them a worksheet to write on, so that they could actually 
all have something to do, none of them would be sitting there not 
doing anything. Because they’re quite a low ability group, and 
some of them lack motivation. So I was trying to think of a way to 
keep them engaged.… I usually find that the computer room will 
motivate pupils’ learning, because they’ll want to see what the 
computer does next. And that also engages them, because they’ve 
got to actually press something and see what happens. 

[6] Equally, using the software made tasks more 
accessible and less laborious to students, and gave them 
the satisfaction of getting more immediate results:  

If they’d had to just draw that, without having the computer there 
to help them, some of them would have really struggled.… Also 
some of them would have just completely turned off if they’d had 
to draw out a table of values for each graph. It would have taken 
them a long time and been quite laborious, whereas the technology 
just meant they could fly through it and get an instant result, and I 
think they enjoyed that. 

[7] Likewise, inviting students to test out their proposed 
solution to a problem by entering it into the projected 
computer contributed to engagement and enjoyment:  

That really helped some of the students in terms of their 
motivation and their learning, because they came out and they 
wanted to get the right thing in front of the whole class, and they 
could actually see it come up on the huge board at the front, which 

some of them really enjoyed. And that was good fun, and helped 
them to see what they were doing.  

[8] Using the software to effect the production of graphs 
reduced the time required to undertake the lesson: 

It’s much quicker. I mean, if you’d done the same lesson in a 
classroom situation, it probably would have taken one lesson to do 
y = 5… and x = 2 etcetera. And then it would have been another 
lesson to start on diagonal lines. 

[9] The teacher noted the striking way in which altering 
a coefficient modifies the computer graph, and how this 
helps to make properties of linear graphs accessible to 
students:  

They can see each time you add a different number to x it cuts the 
y axis at a different point, and they can see that straight away. 

[10] The teacher also identified characteristics of 
graphing software which aid interpretation of graphs: 
the colour coding which associates an equation with its 
graph; and gridlines which make the size of a gradient 
more salient: 

Because each graph’s a different colour… they can see which one 
goes with which.  
And [the graph] is really clear with gridlines behind it. They can 
see that the gradient of the graph changes if you change the 
number before x, and it’s just so clear and easy for them to see. 

[11] Equally, the teacher reported a key move intended 
to guard against students not appreciating the graph as a 
set of points satisfying the corresponding equation: 

With the first line they drew up, I asked them to give me some co-
ordinates of any point on that line, so they could see the co-
ordinates as well. I only did that for the first question, because I 
then think that they’d got the idea of giving the co-ordinates, 
which gives them some mathematical interpretation.  

[12] This formed part of a more general pattern of 
teacher structuring of student work, and questioning 
during it, to maintain lesson pace and support learning 
progression:  

I tried to keep the pace going and to vary the task slightly every 
few minutes, so that they were looking for something extra, and 
asking key questions to make sure that they were getting 
something useful out of the graphs they were drawing. 

[13] The teacher used the software to support 
mathematical experimentation. Following a review of 
graphs of the form y = x + c, she posed a question: 

I said “How would you draw the diagonal line going the other way 
across the graph? So going from top left to bottom right?” And… 
there were several different things called out and we could try 
them very, very quickly, and check them. 

[14] She noted how the computer enabled students in 
their own exploration: 

Some of them also went on to explore for themselves, and try out, 
using their technology, which again is something, if you didn’t 
have the technology, you just could not do.  

She describing supporting one such example:  
He’d drawn an equation which was x = -yx, and… he noticed that 
that was the same as y = -1, and he wondered why, so we then 
rearranged and simplified that equation. 

[15] Likewise, commenting on how she would have 
started the lesson had the projector been available, the 
teacher talked of following her exposition of basic 
technique with some playful exploration intended to 
expose students to a wider range of features: 

And then I would have said, “You’ve got loads of different buttons 
on here”, and I think some of them would have wanted to know 
what some of the extra buttons were. And we probably would have 
had five minutes having a kind of play, getting the feel of it. Just to 
show them some of the other features. 
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Box 2: Lesson summary A2 – Investigating reciprocal and quadratic forms 
 

[1] This one-hour lesson involved a Year 9 (Grade 8) 
class of higher-attaining students. It took place in a 
computer suite with students seated individually at a 
machine and a projectable computer available to the 
teacher. Technical difficulties prevented students printing 
out their work towards the end of the lesson. 
[2] The resource system for the lesson consisted of two 
textbook ‘investigation and discussion exercises’ 
involving use of graphing software. The class was 
already familiar with the software, having used it several 
times, but in the opening review the teacher reminded 
students where “to find the equation button” in case 
“some of you have forgotten where that is”. 
[3] The lesson agenda consisted of a quick opening 
review of linear graphs, followed by work on the 
structured investigations in textbook order. The first 
started by asking about the range of x and y values 
featuring in the graph of y = 1/x, and about ranges of x 
values for which y was increasing or decreasing; it then 
named groups of specific reciprocal functions and asked 
students to explore relationships between the graphs in 
each group (such as y = 1/x, y = 2/x, y = 3/x, y = 4/x). The 
second investigation specified four groups of quadratic 
functions (such as y = x2,  y = x2 + 2, y = x2 – 2, y = (x + 
2)2, y = (x – 2)2) and suggested examining cuts on the 
axes, extreme values, and lines of symmetry, to explore 
what the graphs in each group had in common. 
[4] The activity format within the lesson alternated 
between periods of up to 10 minutes of whole-class, 
teacher-led exposition and questioning to prefigure, 
elaborate or review an investigation task, and periods of 
individual student work on these tasks with the teacher 
circulating to provide guidance and support: 

Today was more of them investigating, exploring, almost on their 
own, but bringing it all back to a whole class thing every so often. 

[5] In preparing the lesson, a prime concern of the teacher 
had been to stretch the class:  

It was an able group, so I wanted something that would stretch them 
and take them on a step further.… [So] we went on to looking at 
reciprocal graphs… looking at what happens as x is increasing… 
That was quite challenging for most of them. But the technology 
helped. 

[6] While the teacher could expect students in this class 
to apply themselves, she reported that exploring with the 
computer particularly motivated them: 

I just said “Come in and go onto Autograph” and… two seconds 
later they were in, sat at a computer, logged on onto Autograph.… 
And they all wanted to explore and they were really enthused and 
excited. 

[7] She identified students who did written work only 
reluctantly as achieving more through this type of 
computer-supported investigation: 

[Named students] are both pupils that aren’t particularly well 
motivated in written work, and I think using the computers was 
really successful for them, and I think they achieved a lot more than 
they often would in a classroom situation.  

[8] Using the graphing software helped impart pace to the 
lesson by expediting routine tabulation and graphing:  

All of these things were done so much more quickly, because the 
technology was there to help them. These pupils are able pupils, 
they can draw a table of values and draw the graph. They’ve done 
that many times, and the technology’s just helping them to move 
through everything at a much quicker pace.  

[9] She noted how one feature of the software interface 
was particularly helpful in bringing out properties of the 
reciprocal graph: using dragging to follow the limiting 
trend of the graph:  

[The technology] was really useful today with the reciprocal graph. 
We were looking at, as x decreases, what happens to y. And they 
could use the hand to grasp the graph down, and look further up the 
graph to see what y tended to.… Obviously if they’d drawn it, they 
would had had to have plotted so many values, and it would have 
been quite difficult to find a suitable scale for the axes. So I think 
the technology just made it a lot quicker and easier to see what was 
happening. 

[10] The teacher questioned students to check their 
understanding of the relationship between equation and 
graph, introducing consideration of the coordinate values 
of particular points where necessary: 

I was going round really checking that pupils understood what the 
graph showed, and relating it back to the equation. So if they didn’t 
understand why the computer drew a certain graph, I’d then go back 
to a table of values with them… showing them where that would be 
plotted on the graph. 

[11] Equally, the teacher questioned students to deepen 
their understanding of the limiting trends, and prompting 
them to exploit the software accordingly: 

I also asked them key questions, like “What happens as x decreases? 
What’s happening to y?” And some of them would just say [things 
like] “It looks like it’s getting bigger but I don’t know why or what 
that means.” And so then we’d look at it in a little bit more detail. 
And zoom in on the graph and see what was actually happening. 

[12] The teacher noted how the graphing software opened 
up possibilities of experimenting with a less controlled 
range of equations. In the opening review she had invited 
suggestions for the equation of a graph which “was going 
in the other direction, sloping the other way” to those of 
the form y=x+c which were already displayed on the 
projected computer, and an unexpected response from 
one student was followed through with the whole class: 

It allows some of them to go off at a tangent and explore their own 
graphs. And a few of them were doing that with some quite 
interesting results. For example… when we looking at recapping 
linear graphs, [one boy] put in x² = y² and found out that it drew a 
line over y = -x, and then we discovered by putting up a blank sheet 
that it actually draws y = -x and y = x. So we showed [by] 
simplifying the equation… [that] it would draw both of those 
graphs.  

[13] Later in the lesson, the teacher encouraged students 
to use the software to explore beyond the types of 
equations specified in the textbook investigations: 

And that led some of them to explore quadratic graphs a little bit 
further. Some of them said “Well, it only makes a curve, a parabola, 
if you put in an x² + 2, but you have to keep the y as just a y, and not 
as a power.” And then some of them tried x² + y² = 25 and got a 
graph of a circle. And there were quite a few different groups of 
people doing slightly different graphs, or investigating in a different 
way. But at the end, that was all brought together, and we discussed 
the different things that people had found out. 

[14] In a similar vein, the teacher referred to a particular 
type of activity that she sometimes used at the start of 
computer-based lessons to give students scope to 
experiment with the operation of software, and so extend 
the features with which the class was familiar:  

Sometimes I do a five minute thing at the beginning of a lesson, 
where they’ve got to look at [the software] and explore, and… they 
can tell me anything exciting that they’ve found. And they quite like 
doing that. Some of them today found out how to shade inequalities, 
and we’ve been looking at inequalities in class, and so some of them 
just found that out on their own, which was great. I didn’t have the 
chance to show the whole class today, but that will be something we 
will do. 
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Box 3: Lesson summary B1 – Investigating linear forms 
  

[1] This one-hour lesson involved a Year 8 (Grade 7) 
class of average-attaining students. It took place in a 
computer suite with pairs of students seated together at 
a machine and a smartboard available to the teacher. 
There was no stylus for the smartboard, obliging the 
teacher to use finger touch and recalibrate the board. 
While this was adequate for giving graphing commands, 
it was less satisfactory for writing or drawing freehand. 
[2] The resource system for the lesson consisted of a 
teacher-devised sequence of tasks involving use of 
graphing software. During the opening phase of the 
lesson, the teacher gave the class step-by-step 
instructions while students opened the graphing 
software on their machine, plotted a point, and entered 
an equation to graph a line. 
[3] The lesson agenda was to review prerequisite 
material before introducing the new idea of linear 
graphs of the form y = mx + c (through the examples y = 
2x + 3, y = 2x + 2, y = 2x + 4) and then applying it in the 
tasks. As initially posed by the teacher, the main tasks 
were:  
• Find the equation of a line which passes through 

the point (5, 2). 
• Find the equation of a line which passes through 

the point (-1, 4). 
[4] However, once a student pair had identified a 
suitable line they were pushed to find others “perhaps 
steeper or shallower or sloping in the other direction”. 
This required them to explore altering the x coefficient 
in the equation: 

About half the class didn’t vary the number of x’s, they stuck with 
x and just varied the constant at the end. And they could find one 
and were like, “I’ve done it!” And I said, “Well, have you? Try 
another.” And so the task initially started off with finding one line 
and developed into finding two, three, four. 

[5] In terms of activity format, the lesson started with 
around 15 minutes of what was primarily whole-class, 
teacher-led exposition and questioning, but including 
instructing students in their first steps with the software. 
Two cycles then followed in each of which the teacher 
quickly posed a task to the whole class, launching 
around 15 minutes of student-pair work, with the 
teacher circulating to provide guidance and support, 
occasionally alerting the whole class to an issue. The 
lesson concluded with around 10 minutes of plenary 
review and elaboration of strategies and solutions, 
through whole-class, teacher-led exposition and 
questioning.  
[6] The teacher singled out the way in which graphing 
software supported a different style of approach to the 
topic which allowed students to get a feel for linear 
forms within a single lesson: 

Just the different approach.… For this particular topic I wanted to 
really get them to feel what the values were doing rather than 
necessarily understanding straight away how the gradient value 
worked.… I just wanted them to get a feel of it and I wanted it to 
happen quite quickly. I only had one lesson and I wanted them to 
really get to grips with y=mx+c, which you can’t really do… 
successfully in just one classroom lesson [without the software]. 

[7] More broadly, using technology enabled subsidiary 
procedures to be carried out rapidly and reliably: 

The thing the ICT offers maths [is] that you can do things 
extremely accurately and extremely quickly, things that sometimes 

take a laborious amount of time in a lesson. If you’ve got a class 
drawing axes and then finding co-ordinates and then plotting lines, 
it takes a lot longer than if they immediately see it on the screen 
and they can change it. 

[8] Using the software made graphing more accessible 
to students, overcoming the presentational difficulties 
and physical  impediments which many encountered 
when working with manual tools: 

I wanted them to get across the barrier of having to get a ruler and 
a pencil out. And there are lots of children in there who are not 
dyspraxic but certainly find organisation and presentation 
challenging. And today that barrier went completely and they 
could work as quickly, if not faster, than their peers, and also faster 
than they would expect themselves to work.… [The technology] 
does enable those students with particular difficulties to just 
overcome them immediately and just get on. 

[9] Using graphing software also helped students to 
grasp the spatial patterning of the graphs and its link to 
their equations: 

We looked at seeing what the line y = 2x + 1 would look like.… 
And then looking at y = 2x + 2, most of them didn’t know what 
was going to happen when I pressed ‘enter’. But when they saw it 
they could then say “Well now I’ve seen that I think I know what 
2x + 4 would look like”. And then [named student] chipped in with 
“What’s 2x + 2.5?” So they’re getting an idea from what the c did, 
that it moved it up and down. I think that was successful and I 
think that was quite enlightening to a lot of the class. 

[10] The teacher drew attention to the value of the 
software’s colour coding in matching equations to 
graphs, but pointed out that students still needed to 
build a deeper understanding of this relationship: 

Omnigraph is nicely designed so that the equation of the line is the 
same colour as the line. I think that’s a really useful part of this 
package, because if it wasn’t you would easily get confused.… 
Between the graph and its equation, it’s quite clear which is 
connected to which. Whether they understand why, why is that the 
equation of that line, or vice versa, I don’t know. 

[11] Equally, she reported particular difficulties which 
might arise and her strategies to pre-empt or retrieve 
them:  

Some of them were… having y = x + -3 and then y = x – 3, which 
are the same graph though the graph does change colour when they 
put the second one in, but it’s not clear that that is the same graph. 
They just think that one has gone.  
Those little things. They try equations that won’t work, or they try 
changing things in the equation. But the control was put on that 
today, because I thought about them doing x = and said [that] I 
want[ed] everything to be y = . I put a little rule in there to stop or 
to restrict the amount of people that would vary that and do 
something different.  

[12] Nevertheless, the teacher viewed play as an 
important aspect of using, and learning to use, software. 
Introducing the lesson, she told students that they 
needed “to have a chance to play with the software”: 

Giving them the freedom to play with it a little bit… that’s 
definitely what I would encourage. Almost with any computer 
package you need an element of play. If you just do structured 
activities and answer structured questions, you don’t get to realise 
about what the package can do to make life a lot easier for you.  

[13] The teacher had devised this lesson as “a target 
practice kind of thing”, to be tackled through trial and 
improvement. However, she found herself having to 
persuade some students of its mathematical legitimacy: 

Some of them were very hesitant at trying their own thing… The 
whole idea of this activity is a trial and improvement activity so 
you are allowed to get things wrong. So I think once they’d got the 
idea that they were improving on their previous guess, that it 
didn’t matter if it was wrong. Because many of them probably 
thought [they had to] find this exactly… to get it spot on, and 
that’s not what the activity is designed to be.  
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Box 4: Lesson summary B2 – Investigating quadratic forms 
  

[1] This one-hour lesson involved a Year 10 (Grade 9) 
class of high-attaining students. It took place in a 
computer suite with students seated mostly in pairs at a 
machine, but sometimes individually, and a smartboard 
available to the teacher. Many students were late for the 
lesson: awaiting their arrival, the teacher suggested that 
those students already present “have a little play” on the 
graphing software. 
[2] The resource system for the lesson consisted of a 
teacher-devised worksheet calling for use of graphing 
software. The teacher reported that the class had already 
used the software several times so that she had no 
concerns about their capacity to graph an equation with 
it. 
[3] The lesson agenda followed the sequence of 
worksheet tasks. The first task was to use the graphing 
software to explore the effect of altering particular 
coefficients of a quadratic equation on the shape and 
location of the resulting curve, with a set of three 
equations specified in relation to each coefficient (such 
as y = x2 + x + 1, y = x2 + 3x + 1, y = x2 - 4x + 1). The 
second task was to find the equations of quadratic 
curves: first to pass through one specified point (3, 4), 
and then through a pair of specified points, (-1, 2) and 
(3, 5). Introducing this task to the class, the teacher 
pointed out its similarity to the “target practice” task 
they had met the previous year in work on straight line 
graphs. 
[4] In terms of activity format and structure, the lesson 
started with around 10 minutes of whole-class, teacher-
led exposition and questioning, reviewing prerequisite 
material and previewing the tasks. There then followed 
around 30 minutes of student work, individually or in 
pairs, with the teacher circulating to provide guidance 
and support. The lesson concluded with around 10 
minutes of plenary review and elaboration of strategies 
and solutions, through whole-class, teacher-led 
exposition and questioning.  
[5] The teacher had devised the worksheet in the light of 
her reservations about the one already available to her, 
which she felt brought a rather too structured and 
didactic form to the investigation: 

I wrote the worksheet, which was tailor-made to the lesson. I have 
got a [graphing software] sheet on quadratics and looked at it. [It] 
was very “Plot these graphs, what do you notice? Plot these 
graphs, where do they intersect?” and very much “Use the package 
to answer these questions”. And I didn’t want that feel to the 
lesson, I wanted the lesson to have this kind of discovery learning 
feel to it, so I decided to discard that and use a more open-ended 
worksheet. It was mainly to give them a chance to have 
somewhere to write down what they were thinking in words. 

[6] Indeed, the teacher saw technology as providing 
particular support for a more independent style of 
discovery learning:  

With ICT you can do a lot of discovery aspects of learning. You 
can get them to sort of have their own control over the situation 
and I didn’t tell them what equations to draw in. I gave them a few 
examples, but I didn’t tell them the other one, they could do 
anything they like.  

[7] Equally, she had designed the new worksheet with a 
concern that the new tasks should better interest, 
engage, and challenge students:  

I did try and make this activity slightly more interesting for them 
to do, and a more demanding activity. So I did, when it came to the 
worksheet, think carefully about how I was going to put the new 
one together so that it did what I wanted it to do without being 
laborious. 

[8] One contribution of technology was in facilitating 
the rapid and reliable production of graphs:  

The idea was that [the technology] would make doing the activity 
an awful lot easier and quicker and more efficient… [so that] 
errors don’t occur.  

[9] The accessibility of this software to students assisted 
the ease with which the lesson could proceed: 

The package is very user-friendly… so you don’t need to be a 
whiz on the computer to be able to master the skills, and be able to 
use the package to understand and interpret the mathematical 
things you are doing. So that was important and made the lesson 
very straightforward from that point of view. 

[10] In terms of bringing out the target mathematical 
ideas, the straightforward way in which several graphs 
could be generated and compared assisted students in 
grasping the effect of altering particular coefficients, 
which was the focus of the first task: 

They actually got to grips with what those numbers are doing… 
what it looks like when you put a 2x2 as opposed to an x2 and 3x2, 
and I think that’s really important.  

[11] However, while the effects of altering the 
parameters a and c were apprehensible to students, this 
was not so for b: 

I noticed on b a lot of them just wrote, “They all go through the 
point (0,1)” which was correct from what they had on their screen, 
but that wasn’t quite what I wanted out of that particular activity. 
So I think there’s a bit of tying up we need to do, and sharing of 
results and ideas. 

[12] The teacher referred to a particular classroom 
episode as exemplifying the contribution of technology 
in helping students to take control of their own 
experimentation, and in supporting productive learning 
from such experimentation. It unfolded when one pair 
tried out an equation with a very small value for the 
coefficient of x2: 

I think that certainly [named students]… started to use that aspect 
of the task, being able to have their own control and vary it. It was 
quite interesting when they put in that 0.00009[x2], because it did 
bring out a really important point. … “Well, that’s a straight 
line?”… “No it’s not.  I’m going to show you it’s not.” And they 
used the technology to help them do that. And then I said, “What 
about 0x2 + x + 1?”… And I could see the cogs turning, and he 
suddenly went, “0x2. That’ll just be x + 1. That would be a straight 
line!”… I think that was quite nice that they’d learned that if you 
have a very small amount of x2, you do get a quadratic but you 
have to change the scales to see it, and it can initially look like a 
straight line. So I think that the technology helped there immensely 
because you couldn’t do that on paper.  It just wouldn’t work.   

[13] More broadly, the teacher wanted students to 
develop habits in which use of the graphing software 
was accompanied by more analytic processes of 
prediction and reflection, so as to make them more 
critical users: 

I wanted them to start to think about what a graph looks like before 
they actually press ‘enter’. So when it comes to doing one in class 
again, what will that graph look like before they actually draw it. 
So they get some idea of what they are expecting. So if they get a 
point that’s completely wrong, because they’ve interpreted 
something incorrectly when they are doing their table of results, 
they will know. “I know this graph should actually look like this. I 
know it should go through 1 on the y axis. I know it should be 
quite narrow. I know I’m expecting it to maybe shift to the left on 
the axes.” And they’ve got some idea of what that graph is going 
to look like so then they can spot their own mistakes in the future. 
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5. A practitioner model of the contribution of graphing software to the teaching of 
algebraic forms 

 

The themes from the earlier study provided a useful organising framework for synthesising 
the thinking reported by teachers in association with each lesson, making it possible to 
elaborate a practitioner model of the contribution of graphing software to the teaching of 
algebraic forms, grounded in the observation and interview data from this study.  
 

Teacher accounts of all the lessons made reference to various aspects of the theme of 
Effecting working processes and improving production, suggesting, for example, that the 
software made it possible to produce graphs “extremely accurately and extremely quickly” 
[B1/7], making “doing the activity an awful lot easier and quicker and more efficient” [B2/8], 
so that – in terms of time economy – students could “move through everything at a much 
quicker pace” [A2/8], allowing a topic to be addressed in only a single lesson [A1/8; B1/6]. In 
the lower- and average-attaining classes, this also helped make tasks accessible to students 
who would have found “organisation and presentation challenging” [B1/8] and would “have 
really struggled” [A1/6], echoing aspects of Overcoming pupil difficulties and building 
assurance.  
 

These factors also underpinned some aspects of the theme of Enhancing the variety and 
appeal of classroom activity, in terms of the use of graphing software making lessons less 
“laborious” [A1/6; B1/7; B2/7] and less dependent on pencil-and-paper work [A2/7; B1/8], 
and increasing the immediacy and interactivity of tasks [A1/5]. For the higher-attaining 
classes, the teachers also talked of the potential of using technology to make tasks more 
“challenging” [A2/5] or “demanding” [B2/7] in mathematical terms. With the lower-attaining 
class, technology was used to give students who “wanted to get the right thing in front of the 
class” [A1/7] the frisson of a very immediate and public test, by getting them to come out and 
check their proposal through using the software on the projected computer.  
 

In relation to Fostering pupil independence and peer exchange, both teachers reported or 
were observed allotting short periods for playful exploration of the software by students, and 
for consequent sharing of discoveries [A1/15; A2/14; B1/12; B2/1]. Equally, for their higher-
attaining classes, the teachers talked of using the technology to support “exploration” [A2/6] 
of more “open ended” tasks [B2/5], in which students “have their own control over the 
situation” [B2/6] and are “investigating, exploring, almost on their own” [A2/4]. Comparing 
her two lessons, Teacher A commented that she gave her higher-attaining class “more open-
ended questions” to which they responded through “a text box on [their] graph to explain 
what differences [they had] seen”, whilst her lower-attaining class were asked “much more 
particular questions” and “had a sheet to put very definite answers on… to focus them in”. 
However, in the lower-attaining class [A1/14] as well as the higher-attaining classes 
[A2/12&13], when students came up with mathematical ideas going beyond the lesson 
agenda, she supported them in “go[ing] off at a tangent” [A2/12]. The contrast that Teacher B 
drew between the framing of tasks for her average- and higher-attaining classes was less 
strong: the former “had a very specific task”, whereas the latter “had to do a slightly more 
open-ended task”. She too was observed supporting students in going beyond the lesson 
agenda [B2/12] in a way which, as she pointed out, was only possible because of the 
availability of the graphing software. 
 

Teachers’ encouragement of informal exploration of the graphing software, and their assist-
ance to students using it to engage in mathematical speculation and experimentation beyond 
the lesson agenda, also evidences how they saw this technology as a means of Supporting 
processes of checking, trialling and refinement. In both her lessons (suggesting that this had 
become part of her curriculum script), Teacher A posed the same speculative question about 
lines sloping in an opposite way, leading to a similar trialling episode being inserted into a 
conventional investigation [A1/13] and an introductory review [A2/12]. Likewise, the ‘target 
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practice’ tasks in both of Teacher B’s lessons (with the explicit linking of them [B2/3], 
indicating both a developing curriculum script, and an emerging activity format tailored to 
this type of topic) were conceived more broadly as examples of ‘trial and improvement’ 
[B1/13], dependent on feedback from the graphing software. With the younger class, this 
required the teacher to renegotiate norms with students who were hesitant about the legit-
imacy of trialling [B1/13]; with the older class, the socio-mathematical agenda had moved on 
to developing habits of prediction and reflection to scaffold trialling processes [B2/13]. 
 

Finally, in terms of the theme of Focusing on overarching issues and accentuating important 
features, the teachers talked of how use of graphing software helped students to “get to grips 
with” [B2/10], “get an idea of” [B1/9], or “see straight away” [A1/9] the effect of altering a 
coefficient in the equation on the properties of its graph. Likewise, the teachers highlighted 
particular software devices which facilitated apprehension of equation/graph matching 
[A1/10; B1/10], comparison of gradients [A1/10], and examination of limiting trends [A2/9]. 
Nevertheless, teacher management and guidance also played an important part in helping 
students to gain such insights. In relation to one of the ‘target practice’ tasks, for example, key 
actions of Teacher B included constraining the type of expression to be graphed [B1/11], 
drawing attention to the equivalence of expressions [B1/11], and pressing students to seek 
further equations so as to generate graphs which were “steeper or shallower or sloping in the 
other direction” [B1/4]. Likewise, in both her lessons, Teacher A reported actively checking, 
and if necessary developing, students’ understanding of the relationship between the equation 
of a graph and the coordinates of points lying on it [A1/11; A2/10], and prompting students to 
attend to the key mathematical properties which investigations aimed to establish [A1/12; 
A2/11]. 
 
6. The significance of instrumental induction, task design, and teacher intervention 
 

The discussion in the previous section has highlighted the crucial part played by teacher 
prestructuring of technology-based tasks and by teacher shaping of technology-and-task-
mediated activity in realising the ideals of the practitioner model. This section develops these 
points to examine the ways in which teachers, and the wider sources that they drew on, 
contributed to the conduct of well functioning lessons. 
 

Analysis of ‘institutional’ and ‘instrumental’ aspects of tool use (Artigue, 2002; Guin, 
Ruthven & Trouche, 2005; Ruthven, 2002) has developed in response to difficulties 
encountered with the educational use of sophisticated technologies designed for use by 
professional mathematicians. It provides a conceptual framework for analysing the process 
through which students (and indeed teachers) progressively appropriate a material artefact to 
create a mathematical instrument. Essentially, in the school context, this calls for 
development of an institutionalised order of tool-mediated activity, and the induction of users 
into this order. Graphing software, however, has been explicitly designed for educational use. 
The teachers described the packages they were using as “instinctive” [B] and “user-friendly” 
[A&B]. They identified several aspects of the user interface which made the software readily 
accessible and interpretable by students (contrasting the software favourably with graphic 
calculators in many of these respects): the clearly labelled scales [A&B] and the gridlines in 
the background to assist comparison of gradients [A]; the ‘hand’ tool for dragging the image 
to view sections of the graph outside the original display [A]; the colour coding which 
associated particular equations with their graphs when several were displayed simultaneously 
[A&B]; the acceptability of expressions defined in the form x= as well as y=, and defined 
implicitly as well as explicitly [A]. Nevertheless, however much these graphing packages had 
been “designed to do things easily” [B], the teachers still played an important role in 
inducting and supporting students in use of the software for mathematical purposes. It was on 
this foundation that classroom realisation of the teachers’ conceptions of successful 
technology use depended. 
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Both teachers followed a dual approach to establishing a collective repertoire of computer 
graphing techniques. Prior to undertaking a classroom task involving graphing, unless the 
teachers had confidence that the core techniques required were already familiar to the class 
[B2/2], they introduced [A1/2; B1/2] or reviewed [A2/2] them. More serendipitously, they 
also allotted short periods to playful exploration of the software by students, and to 
subsequent sharing of new possibilities [A1/15; A2/14; B1/12; B2/1]. Supporting and 
developing use of the software was also an important dimension of teacher interaction with 
students while they were working on tasks. In the observed lessons, teachers guided basic 
operation of the software, prompted strategic action with it, and supported mathematical 
interpretation of its results. Teacher actions included: explaining how to enlarge a target point 
to make it more visible [B1], and how to enter x2 in the equation editor [B2]; helping students 
to understand why the software had produced a horizontal line rather than the expected 
sloping one (as a result of entering y=5+4 rather than y=5x+4) [B1], or a straight line rather 
than the expected curve (as a result of entering y=x+22 rather than y=(x+2)2) [B2]; prompting 
students to drag the displayed image to expose more of a particular graph [A1], or to pursue 
the limiting trend of a graph [A2]; and prompting students to zoom out on the displayed 
image of 0.00000009x2+x+1 to test whether it was a straight line, then introducing the 
comparison with 0x2+x+1 [B2].  
 

Likewise, the structuring of lesson tasks through prepared materials and teacher intervention 
was crucial in realising many of the benefits attributed to using the graphing software. The 
mathematical content of the prepared tasks used by teachers corresponded closely to examples 
suggested in official guidance, as illustrated by the extracts in Box 5. The prepared tasks used 
in both lessons by Teacher A followed the inductive format exemplified by official examples 
1 and 2, as did the first prepared task used in the second lesson by Teacher B. Teacher B’s 
‘target practice’ tasks can be viewed as a reframing of the format exemplified by official 
example 3, capitalising on the interactivity of the technology. Her reason for adopting this 
task format was to introduce a more exploratory style, breaking away from what she saw as 
the overly didactic style of the investigation genre [B2/5]. In the classroom, however, her 
intervention proved necessary to reframe the task in suitably didactic terms [B1/4]. This 
signals the crucial part that didactical structuring through task design and/or teacher 
intervention plays in Focusing on overarching issues and accentuating important features. 
 
Box 5: Exemplary lesson tasks from the official teaching guidance for Years 8 and 9  
 
Plot the graphs of simple linear functions, in the form y = mx + c, on paper or using ICT, and consider their 
features. 
 

1) Plot and interpret graphs such as: 
       y = 2x    y = 2x + 1  y = 2x + 4 y = 2x – 2 y = 2x – 5 [p. 165] 

 
Use a graphical calculator to investigate the family of straight lines y = mx + c. 
 

2) Draw the graphs of: 
  y = x + 1  y = x + 2  y = x + 3  

y = x – 1  y = x – 2  y = x – 3 
Describe what the value of m represents. 
Describe what the value of c represents. 

 

3) Use a graphical calculator and knowledge of the graph of y = mx + c to explore drawing lines through: 
(0, 5)          (-7, -7)  (2, 6) 
(-7, 0) and (0, 7)         (-3, 0) and (0, 6) (0, -8) and (8, 0)    [p. 167] 

 
Use a graphical calculator to investigate graphs of functions of the form y = ax2 + bx + c, for different values of 
a, b and c. 
 

4) Investigate families of curves such as: 
y = ax2  y = (x + b)2 y = x2 + c y = (x + b)2 + c   [p. 171]
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Essentially, whatever task format was adopted, the learning goal of these lessons was to 
induct students into an accepted mathematical organisation of the multimodal systems 
constituted by equations of the types y = mx + c or y = ax2 + bx + c and their graphs. 
Achieving such an organisation depends on managing the double semiotic of the system 
through coordinating algebraic and geometric registers, while also managing its multi-
dimensionality through isolating phenomena and controlling variables. The official example 4 
(in Box 5) illustrates this (as do the example types and sets in Boxes 1-4). Each of the first 
three subtasks in this example isolates a geometric phenomenon and controls algebraic form 
accordingly, playing on a single parameter; only with the fourth subtask does some 
integration of these phenomena commence. Nevertheless, a breakdown in such management 
emerged in one quadratic investigation where students failed to formulate the intended 
property of the coefficient b from the family of forms selected to exemplify it [B2/11]. This 
example apart, however, the investigation tasks (and indeed the lesson expositions) employed 
by teachers were largely successful – through sequencing and patterning example types and 
sets – in providing a logical decomposition of the multimodal mathematical system under 
consideration. It is this didactical organisation of the topic which underpinned the use of 
graphing software to help students grasp the effect of altering a coefficient in the equation on 
the appearance of its graph. In the absence of such structuring, however, the ‘target practice’ 
tasks called for much higher levels of teacher mediation. 
 
This puts in perspective, on one side, Teacher A’s suggestion that students were 
“investigating, exploring, almost on their own”, and, on the other, Teacher B’s (partial) 
renunciation of the “‘Do this, what do you notice? Do this, what do you notice?” style of the 
investigation genre. We have seen that the teachers were certainly aware of structuring their 
introductory expositions and student investigations to differing degrees for their two classes. 
But whatever the class, realising the benefits of using the graphing software to enhance the 
generation and comparison of multiple examples was dependent to a large extent on the 
intellectual organisation provided by other prepared resources and further teacher 
contributions. In the investigation tasks and introductory expositions such organisation was 
introduced through carefully structured example sets. But because the ‘target practice’ tasks 
incorporated no comparable structuring, given students’ limited experience and knowledge of 
the mathematical topics in question, the organising function then fell predominantly on 
teacher prompting and questioning. This emphasises that graphing software and lesson tasks 
form a resource system, in which the technology’s contribution to supporting learning is 
powerfully conditioned by task structuring 

 
7. The adaptation of teaching practices and the development of craft knowledge 
 

Earlier sections have highlighted the crucial part played by teacher structuring and shaping of 
technology-mediated activity in realising the ideals of the practitioner model. These sections 
have evidenced the adaptation of teaching practices and development of craft knowledge 
associated with teachers appropriating graphing software as an instrument for teaching and 
learning mathematics.  
 

In terms of working environment, many of the aspects observed were not specific to graphing 
software. In three of the four lessons [A1; A2; B1], for example, technical difficulties arose 
which required some modification of normal working procedures. Likewise, in the changed 
working environment of the computer suite, teachers had to modify classroom routines, 
notably those concerned with managing the start of lessons, to include getting students seated 
appropriately, and their computer workstations and resources opened for use. Equally, 
adaptation was required to routines for securing the attention of students during periods of 
independent work, so as to efficiently make important points to the class as a whole [B1]: 
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I did a little [whole-class intervention during] the main activity… because if you didn’t do that you’d 
have repetitive questions. Which is something I’d do in a lesson anyway, so it’s just translating that to 
computers, and getting them to turn their monitors off and face the board… That’s something I’d be quite 
keen to get them into the habit of doing… Tearing them away from their computers… I find that very 
difficult because you know they’re not listening to you and they are missing out on something. 

 

Developing a functional resource system incorporating the use of graphing software required 
teachers to extend their practice in several ways. As reported earlier, they developed strategies 
both to familiarise students with (and later to review) core techniques for using the software, 
and to allow students to explore (and then to share their discoveries of) a wider range of 
technical possibilities. Complementarily, the teachers had devised or appropriated suitable 
tasks and supporting textual materials to underpin classroom activity that employed computer 
graphing to investigate the topic of algebraic forms. They were also developing a repertoire of 
strategies to support students in tackling these tasks, concerned not just with guiding software 
operation, but with prompting strategic action, and supporting mathematical interpretation.  
 

In terms of activity structures, teachers suggested that use of technology made investigative 
lessons more viable. Equally, it seems that the availability of projection facilities permitted all 
the investigative lessons observed in this study to be organised within an activity structure in 
which episodes of individual or paired student activity at workstations were interleaved with 
whole-class activity, concluding with plenary review. Moreover, in the practice of Teacher B, 
the emergent type of ‘target practice’ task was associated with a rather different activity 
format for individual or paired student work, capitalising on the interactivity of the software 
to centre investigative activity around a process of trial and improvement. Notable also was 
the similar way in which both teachers had adapted the whole-class exposition and 
questioning format to exploit the opportunity to use the software to provide immediate 
feedback on student predictions, for example by students ‘taking the stage’ to use the 
projected computer to test their suggestions. 
 

These preceding elements of adaptation are all interwoven in the development of teachers’ 
curriculum scripts for the topic of algebraic forms, as evidenced in the lesson agendas they 
formulated, and in the detail of their classroom action (including interaction) during the 
observed lessons. On the basis of explicit comment by teachers (such as Teacher B referring 
her older class back to their previous encounter with the ‘target practice’ genre) or recurrent 
patterns of teacher action (such as Teacher A posing to both her classes the same speculative 
question leading to similar trialling activity) some of these examples clearly represent mature 
developments in teachers’ curriculum scripts for the topic. Other examples provide more 
evidence of teachers extending their repertoire of approaches to supporting students and 
(re)directing them towards desired states, intended responses and resultant learning. This 
included teachers’ extension of their capacity for reactive teaching in response to new types of 
student initiative made possible by the graphing software (such as Teacher A responding to 
students’ observations of the overlap of graphs [A1/14; A2/12] by explaining these properties 
through symbolic reduction of the more complex equation; and Teacher B guiding students’ 
exploration of a ‘barely’ quadratic expression through zooming out on its graph and 
comparing it to the ‘null-ly’ quadratic expression [B2/12]). 
 

Finally, change in the time economy is evident in teachers’ comments on the contribution of 
graphing software to Effecting working processes and improving production. Equally, teach-
ers reported that use of the software improved rate of learning return from classroom time by 
virtue of other contributions identified in the practitioner model, notably Overcoming pupil 
difficulties and building assurance and Focusing on overarching issues and accentuating 
important features. On the other hand, teachers had to manage the development of a double 
instrumentation of graphing both by hand and by machine. Doing this efficiently was assisted 
by development of a coherent resource system as noted earlier, and by the availability of class-
room projection permitting collective instrumented activity involving the class as a whole. 
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8. Conclusion 
 

This study of teacher thinking and classroom practice can be read at two levels: at a more 
specific level it seeks to provide a holistic understanding of how English secondary-school 
mathematics teachers use graphing software to teach about algebraic forms; at a more generic 
level, it aims to provide an example that illustrates the potential of an evolving framework for 
understanding technology use in school mathematics teaching. 
 

Viewed from a strictly mathematical perspective, the archetypical classroom usage of 
graphing software that has been identified and examined in this study focuses on those same 
ideas identified in Fey’s (1989) discussion of pioneering work some twenty years ago: namely 
relations between symbolic expressions and coordinate graphs, notably the connection 
between particular coefficients or parameters in an expression and particular features of the 
corresponding graph. Likewise the same types of mathematical task and attendant reasoning 
are prominent: namely induction of relationships between expression and graph through 
identification of pattern, and matching of expression to graph through trial and improvement. 
What this study shows, however, is that these features are simply the mathematical face of a 
larger pedagogical adaptation. Here indeed, both in official guidance and in classroom 
practice, graphing software was treated essentially as a pedagogical aid (replicating the 
predominant trend evidenced in the earlier work reviewed). 
 

Teachers were particularly drawn to use graphing technology to support classroom activity 
that they variously described as involving investigation, exploration or discovery (as reported 
also in earlier studies by Farrell, 1996; Simmt, 1997). More specifically, in terms of the 
general themes of the practitioner model developed in our earlier work, teachers saw graphing 
software as contributing to:  
• Effecting working processes and improving production through making it easier to 

produce graphs accurately and rapidly, so increasing the efficiency and pace with which 
related topics can be covered;  

• Overcoming pupil difficulties and building assurance, through making graphing tasks 
more accessible to students who have difficulties with organisation and presentation; 

• Supporting processes of checking, trialling and refinement, through enabling lesson 
tasks based on trial and improvement, and supporting mathematical speculation and 
experimentation within and beyond the lesson agenda; 

• Focusing on overarching issues and accentuating important features, through helping to 
bring out the effects of altering particular coefficients or parameters in an equation on 
the properties of its graph, and through facilitating comparison of gradients and 
examination of limiting trends; 

• Enhancing the variety and appeal of classroom activity, through reducing ‘laborious’ 
written work, increasing the immediacy and interactivity of classroom tasks, and 
helping to create new forms of playful challenge within lessons; 

• Fostering pupil independence and peer exchange, through providing support for 
exploration by students and consequent sharing of discoveries, including software 
techniques and mathematical ideas within and beyond the lesson agenda. 

  

At the same time, this study has highlighted the crucial part played by teacher structuring and 
shaping of technology-and-task-mediated student activity (as also shown in earlier studies by 
Doerr & Zangor, 2000; Farrell, 1996; Godwin & Sutherland, 2004) in realising the ideals of 
the practitioner model. Although teachers consider graphing software very accessible, 
successful classroom use still depends on their inducting students into using computer 
graphing for mathematical purposes, providing suitably prestructured lesson tasks, prompting 
strategic use of the software by students, and supporting mathematical interpretation of the 
results. Equally, (as noted also by Godwin & Sutherland, 2004), the example of teaching 
about algebraic forms illustrates how, by providing prestructuring lesson tasks and 
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intervening to shape student work on them, teacher contributions play a fundamental part in 
managing the underlying semiotic system to make mathematical relations apprehensible to 
students, through coordinating algebraic and geometric registers, isolating phenomena and 
controlling variables.  
 

Finally, this study has illustrated ways in which teachers, in the course of appropriating 
graphing software, adapt their classroom practice and develop their craft knowledge. 
Specifically, it has highlighted how teachers:  
• establish a coherent resource system incorporating software-mediated lesson tasks aligned 

with teaching goals, and supported by a common repertoire of suitable graphing 
techniques; 

• adapt formats for classroom activity to capitalise on the interactivity of the software; 
• extend curriculum scripts to encompass these features, and to provide for proactive 

structuring and responsive shaping of student activity on software-mediated lesson tasks; 
• rework lesson agendas, both to include induction to computer graphing and to take 

advantage of the resulting time economy. 
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