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Following the 1997 publication of the Royal Society and Joint Mathematical Council report on
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munity began to call for a similar study into the teaching of geometry. In response to these calls,
the Royal Society and JMC arranged a seminar in October 1999 to enable discussion about the
place of geometry in the National Curriculum and post-16 education. 

A wide range of opinion was voiced at the seminar, but all those present agreed upon three
things: that geometry was of vital importance to the mathematical education of all young peo-
ple; that the geometry component of 11-19 mathematics could be improved significantly from
its current position; and that there would thus be value in establishing a working group under
the auspices of the JMC and Royal Society to examine the issues in detail. 

This report is the result of the working group’s discussions. It argues for considerable changes in
the way that geometry is taught 11-16 (including a significant commitment to teachers’ contin-
uing professional development) and for a fundamental review of the structure of post-16 qualifi-
cations in mathematics.

On behalf of the Royal Society and JMC, we wish to express our thanks to Professor Adrian
Oldknow and the members of the working group for the substantial effort they have put into
this study.

We commend this report to policy makers throughout the education system.
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“About binomial theorem I’m teeming with a lot of news,
With many cheerful facts about the square of the

hypotenuse”
(WS Gilbert, The Pirates of Penzance)

The mathematical content for pupils following the
National Curriculum in secondary schools in England is
described under the headings of: Number and algebra;
Shape, space and measures and Handling data.
However the term ‘numeracy’ has become increasingly
used in place of mathematics in relation to school
education. This is an unfortunate practice since it
downplays two areas, algebra and geometry, which are
of major importance in school mathematics. The
teaching of each of these aspects of mathematics has
now been the subject of commissioned reports from the
Royal Society and the Joint Mathematical Council of the
United Kingdom, and the Qualifications and Curriculum
Authority is currently engaged in a three year project on
developing the teaching of both algebra and geometry. 

A past President of the Royal Society, Sir Michael Atiyah,
provided some succinct background to the development
of algebra and geometry in a lecture given in Toronto in
June 2000:

I want to talk now about a dichotomy in
mathematics, which has been with us all the time,
oscillating backwards and forwards... I refer to the
dichotomy between geometry and algebra.
Geometry and algebra are the two formal pillars of
mathematics; they both are very ancient. Geometry
goes back to the Greeks and before; algebra goes
back to the Arabs and the Indians, so they have
both been fundamental to mathematics, but they
have had an uneasy relationship.
Let me start with the history of the subject.
Euclidean geometry is the prime example of a
mathematical theory and it was firmly geometrical,
until the introduction by Descartes of algebraic
coordinates, in what we now call the Cartesian
plane. That was an attempt to reduce geometrical
thinking to algebraic manipulation.
(Reprinted in Mathematics Today, 37(2), April 2001
46-53.)

At school level, algebra can seem quite abstract and
cerebral. In Fitzgerald’s studies for the Cockcroft
committee it was algebra which was most frequently
cited as the part of mathematics where adults
remembered losing touch with mathematics. On the
other hand, there are clear links in geometry to the
world of our senses and experience. For example, we
can easily perceive when objects are parallel, or

perpendicular, or symmetrical - such as recognising
when a minute adjustment is needed to the way a
picture hangs. Sir Michael offers the following
comments on our capacity to perceive, and its
relationship with geometry:

Our brains have been constructed in such a way
that they are extremely concerned with vision.
Vision, I understand from friends who work in
neurophysiology, uses up something like 80 or 90
percent of the cortex of the brain...
Understanding, and making sense of, the world
that we see is a very important part of our
evolution. Therefore spatial intuition or spatial
perception is an enormously powerful tool and
that is why geometry is actually such a powerful
part of mathematics - not only for things that are
obviously geometrical, but even for things that are
not. We try to put them into geometrical form
because that enables us to use our intuition. Our
intuition is our most powerful tool... I think it is
very fundamental that the human mind has
evolved with this enormous capacity to absorb a
vast amount of information, by instantaneous
visual action, and mathematics takes that and
perfects it.

Geometry is of far reaching importance beyond the
worlds of professional mathematicians and of
mathematics teaching. Geometry is frequently used to
model what we call the ‘real world’ and has many
applications in solving practical problems. (It is
interesting to note that the French term for a surveyor is
‘un expert géomètre’.) Geometry is making
contributions to many important scientific
developments such as the Human Genome Project,
Buckminster-Fullerene research, and whole-body
tomography. Through media such as film, television and
computer games we encounter computer generated
geometric images of great complexity, and children and
adults alike derive pleasure from creating designs and
patterns exhibiting geometric forms.

So geometry is an important subject, with wide
applications and a long history. It deals with matters we
find attractive and for which we have a strong visual
capacity. On the surface, then, it would appear that
geometry should be one of the easiest branches of
mathematics to teach. But this is not the case - neither in
England nor in much of the developed world. This Royal
Society / JMC study set out to identify why this is so.

Geometry is one of the oldest branches of mathematics
- itself one of the oldest of mankind’s intellectual
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studies. No wonder, then, that it suffers from an
embarrassment of riches in terms of theories, results,
techniques and applications. Many of these are well
within the grasp of most, if not all, students in 11-19
education. We might refer to this, not unwelcome,
problem as one of abundance. Clearly, then, choices
have to be made on what material to include in the
curriculum. At one extreme there is a danger of
choosing eclectically from this abundance in a way that
leads to the teaching of a lot of apparently unconnected
‘bits’. At the other extreme there is a danger of
developing a tightly organised body of knowledge
which addresses only a very small part of geometry. Our
challenge has been to combine breadth with both
educational and mathematical coherence - a problem
we refer to as coherence. 

One of the less obvious difficulties in teaching geometry
lies in the abstractions we make – we illustrate points
and line segments through drawings and diagrams and
yet neither object can be visible, except in our ‘mind’s
eye’. We do not often choose to discuss such a difficult
issue! Frequently however, teachers will draw rapid
sketches purporting to represent objects in their own
imagination which may actually not be recognised as
such by their pupils.

The geometry of the ancient Greeks, as recorded by
Euclid, was far more than a summary of known facts - it
was an organised body of knowledge starting with a
number of definitions and assumptions (axioms) which
used logical deduction to establish a series of results in
the form of theorems together with proofs. It is through
the teaching of geometry that most pupils still
encounter at least one theorem, that of Pythagoras,
together with one or more proofs, and maybe some
applications. My non-scientific guess is that most adults
will remember the name Pythagoras, and probably that
his theorem has to do with right angled triangles and
words like ‘hypotenuse’, but that it would be
extraordinary if they could remember a proof of the
theorem. The role of proof, and the range of pupils for
whom it is relevant, remains a major issue in geometry
teaching. Despite the long tradition for the inclusion of
geometrical proof in school curricula there is little
evidence that we have developed effective methods for
its teaching. Nevertheless, the working group supports
the inclusion of proof in school geometry both because
of its central role in mathematics, and as a contribution
to developing more general skills of argument and
criticism.

In order to address the issue of coherence the working
group has followed on from a previous review of the
geometry curriculum [Wynne Willson, 1977] and
formulated a set of objectives for the teaching of
geometry in the 21st Century. Against these objectives
we have concluded that the geometrical content of the
National Curriculum does provide a reasonable basis for

the 11-16 curriculum, but needs strengthening in two
main areas. These concern work in 3-dimensions, and in
the educational application of Information and
Communications Technology (ICT). Leaving the
geometrical content relatively unchanged for now will
allow scope for dealing with the issue which the
working group has identified as by far the most
important one for 11-16 geometry. That is to ensure
that teachers have the knowledge, understanding, skills
and resources to teach geometry in a way which
genuinely captures pupils’ interest and imagination,
while developing their thinking and reasoning skills,
their powers of visualisation, their ability to apply and
model, and their understanding. 

The 11-16 geometry curriculum in England continues to
concentrate on techniques for working in 2 dimensions,
such as the plane geometry derived from Euclid,
together with elements of transformation, vector and
coordinate geometry. Yet little of this finds its way into
current AS/A-level specifications in mathematics, whose
geometrical content has been drastically reduced over
time. Similarly, the kind of geometry studied by
mathematics undergraduates bears little resemblance
to that studied either pre- or post-16. We refer to this
issue as one of progression.

While the working group is optimistic about the
possibility for significant improvement in teaching
geometry 11-16, (which is not to underestimate the
challenges to be addressed), it is far less sanguine about
the state of geometry in 16-19 education. The
geometrical content of the current AS/A-level
specifications in pure mathematics is very small and
offers little by way of progression from what has come
before. But there is little point in advising content
changes at this level when the whole basis of 16-19
qualifications in mathematics and all other subjects has
just undergone a series of changes, the consequences
of which have yet to be fully felt. Our view is that the
general position of mathematics in 16-19 education
needs a fundamental review before geometry can be
accorded an acceptable place.

It is widely recognised that secondary schools have
problems recruiting and retaining mathematics
teachers. Many of those currently teaching
mathematics in secondary schools are not mathematics
graduates. Due to the problem of progression, it cannot
be assumed that even trained mathematics graduates
are adequately equipped to teach geometry in the way
the working group envisages. To remedy this will require
a substantial programme of well planned continuing
professional development for teachers which improves
both their subject knowledge in geometry and their
approaches to teaching it. The current Key Stage 3
mathematics strategy provides substantial opportunities
for the professional development of mathematics
teachers in secondary schools and has the potential to
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make a valuable contribution to improvements in the
teaching of geometry. But this alone will not be sufficient
to improve teaching throughout the 11-19 sector. 

Computer software, particularly that known as Dynamic
Geometry Software, has the potential to make
significant improvements in how geometry is learnt and
taught. But such software is not widely available in
school mathematics classrooms, as is the case with
computing resources in general. In order for such
resources to have maximum effect on improving the
teaching and learning of geometry we need to find
ways which allow talented teachers the time to develop
a range of effective Information and Communication
Technology based approaches. In addition to ICT, there
is a need for a range of good materials to support the

teaching of geometry in school. These, too, need to be
carefully prepared and tried out, and that will also
require time and effort.

The working group has been challenged to articulate its
vision for geometry teaching. I believe that what we
seek is a coherent, stimulating, rewarding and
challenging geometry curriculum which is taught in a
way which captures students’ interest and imagination
and which attracts them towards mathematics as a
subject for further study. The achievement of our vision
requires a significant improvement in the quality of
teaching, and this has major consequences - both for
the continuing professional development of teachers
and for the provision of high quality supporting
resources.
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This report presents the findings of a broadly based
working group established by the Royal Society and the
Joint Mathematical Council to consider the teaching
and learning of geometry in schools and colleges. The
study was initiated following the publication of results
of international educational comparisons, the 1999
revision of the National Curriculum for English schools
11-16, and at a time of several major policy initiatives in
education. 

The working group considered the rationale for a
geometry curriculum, its possible content and issues
concerned with its effective teaching. This report
reflects its agreed views on the state of geometry
teaching 11-19 and the major issues needing to be
addressed to bring about improvements. It is supported
by additional materials, some of which are printed here
as appendices, and others of which are accessible from
the Royal Society’s website at www.royalsoc.ac.uk
These additional materials are intended to help illustrate
some of the points in the report, and to offer examples
of approaches which might be taken by schools and
colleges. They are sometimes attributed to an individual
or groups of members and are then not claimed to
represent the views of the whole group. 

In order to help identify major issues raised, the report is
structured around a number of agreed Key Principles. In
the main body of the report these are presented together
with explanations, supporting arguments and, where
available, evidence. Additional information and
exemplification is provided in the appendices. One or more
recommendations are associated with each Key Principle.

Overall, for mathematics 11-16, we conclude that the
geometrical content of the new National Curriculum,
with a few adjustments, forms an appropriate basis for
a good geometry education. In order for this to be
achieved, however, considerable changes are needed in
the way geometry is taught.  It is vital that those
working to improve mathematics education ensure that
their work contributes significantly to improvements in
geometry (as well as mathematics) teaching. Bringing
about improvements in geometry teaching will require a
significant commitment to a substantial programme of
continuing professional development alongside the
development of appropriate supporting materials. 

For mathematics post-16 we conclude that there are
insufficient opportunities for students to build on their
11-16 studies in geometry. Those concerned with
curriculum design need to review the structure of post-
16 qualifications in mathematics to ensure they provide
improved opportunities for students to continue to
study geometry. The provision of challenging and
interesting geometry should help make mathematics a

more attractive subject of study for more students. This
in turn would contribute to overcoming the current
shortage of those with good mathematical skills.

Key Principles

Key Principle 1: Geometry should form a significant
component of the mathematics curriculum for all
students from 11 to 19.

Key Principle 2: Any choice of curriculum should be
underpinned by a rationale. 

Key Principle 3: The geometry curriculum should
maintain breadth, depth and balance, and be consistent
with Key Principle 2 and the objectives in
Recommendation 3.

Key Principle 4: Geometry should be given a higher
status, together with a fair share of the teaching time
available for mathematics.

Key Principle 5: Students in 16-19 education should
have the opportunity to continue further their studies in
geometry.

Key Principle 6: The assessment framework for the
curriculum should be designed to ensure that the full
range of students’ geometrical knowledge, skills and
understanding are given credit.

Key Principle 7: The most significant contribution to
improvements in geometry teaching will be made by the
development of good models of pedagogy, supported by
carefully designed activities and resources, which are
disseminated effectively and coherently to and by teachers.

Key Principle 8: It is a matter of national importance that
as many of our students as possible fully develop their
mathematical potential. Geometry, with its distinctive
appeal, should make mathematics attractive to a wider
range of students. 

Recommendations

Recommendation 1: We recommend that curriculum
and assessment specifications be reviewed to ensure
that geometry forms a significant component of the
mathematics curriculum for all students from 11 to 19.

Recommendation 2: We recommend that the title of
the attainment target Ma3 of the National Curriculum
be changed from ‘Shape, space and measures’ to
‘Geometry’.

Summary
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Recommendation 3: We recommend that the geometry
curriculum be chosen and taught in such a way as to
achieve the following objectives:
a) to develop spatial awareness, geometrical intuition

and the ability to visualise; 
b) to provide a breadth of geometrical experiences in 2-

and 3-dimensions;
c) to develop knowledge and understanding of and the

ability to use geometrical properties and theorems;
d) to encourage the development and use of

conjecture, deductive reasoning and proof;
e) to develop skills of applying geometry through

problem solving and modelling in real world
contexts;

f) to develop useful Information & Communication
Technology (ICT) skills in specifically geometrical
contexts;

g) to engender a positive attitude to mathematics; and
h) to develop an awareness of the historical and cultural

heritage of geometry in society, and of the
contemporary applications of geometry.

Recommendation 4: We recommend that the current
geometrical content of the English secondary school
mathematics National Curriculum be regarded as a
reasonable basis for an appropriate and rewarding
geometry education for all pupils.

Recommendation 5: We recommend that the
mathematics curriculum be developed to encourage
students to work investigatively, demonstrate creativity
and make discoveries in geometrical contexts so that
students develop their powers of spatial thinking,
visualisation and geometrical reasoning.

Recommendation 6: We recommend that the
mathematics curriculum be developed in ways which
recognise the important position of theorems and
proofs within mathematics and use the study of
geometry to encourage the development of logical
argument appropriate to the age and attainment of the
student. 

Recommendation 7: We recommend that the
mathematics curriculum be developed to provide ample
opportunities for students to use geometry for practical
problem solving through mathematical modelling in
both 2- and 3-dimensions.

Recommendation 8: We recommend that the geometry
curriculum be developed to give greater emphasis to
work in 3-dimensions and to make better use of
Information and Communication Technology (ICT). 

Recommendation 9: We recommend that the use of the
word ‘numeracy’ in government publications and
announcements be replaced by ‘mathematics’ to ensure
that geometry is accorded its rightful position.

Recommendation 10: We recommend that geometry
should occupy 25% - 30% of the teaching time, and
hence a similar proportion of the assessment weighting,
in the 11-16 mathematics National Curriculum.

Recommendation 11: We recommend that the total time
allocated to mathematics 11-16 be monitored to ensure
students spend at least 3 hours a week on mathematics,
so that sufficient time is given to the teaching of geometry,
and to other aspects of mathematics.

Recommendation 12: We recommend that a
fundamental review be made of all 16-19 mathematics
provision. This should include considering how:
a) the structure and content of the current AS/A-level

Mathematics and Further Mathematics specifications
can better meet the needs of students and include a
greater emphasis on geometry; and

b) other post-16 mathematics qualifications, such as Free
Standing Mathematics Units (FSMUs) and AS-level Use
of Mathematics, can enable students to have the
opportunity to continue their study of geometry.

Recommendation 13: We recommend that in the 16-19
curriculum the key skill, ‘Application of Number’, be re-
titled ‘Application of Mathematics’ and that the range
of qualifying mathematical studies be broadened so
that students continue their study of geometry.

Recommendation 14: We recommend that a review be
made of the methods of assessment and examination
used in mathematics at Key Stage 3, at GCSE and in post-
16 qualifications to ensure that appropriate credit is given
for the attainment of specific geometrical objectives. 

Recommendation 15: We recommend that the relevant
government agencies work together, with bodies such
as the mathematics professional associations
represented on JMC, to provide a coherent framework
for supporting the development of teaching and
learning in geometry. This will involve:
a) the recognition and development of good practice in

geometry teaching through pilot studies and
research;

b) the design of programmes of continuing professional
development and initial teacher education; 

c) the production of supporting materials; and
d) the establishment of mechanisms to provide

supporting resources, including ICT.

Recommendation 16: We recommend, in terms of
mathematics in general, that:
a) better publicity and information be provided to

schools, students and parents about the career
opportunities afforded by studying mathematics; and

b) ways be sought to encourage schools and colleges to
attract more students to study mathematics post-16,
particularly at A-level.



This report presents the findings of a working group
established by the Royal Society and the Joint
Mathematical Council (JMC) to consider the teaching
and learning of geometry in schools and colleges. The
working group, chaired by Professor Adrian Oldknow,
met fourteen times between February 2000 and May
2001. The membership of the working group is given at
the front of this report and its terms of reference can be
found in Appendix 1.

The study was initiated following publication of the
results of international educational comparisons, the
1999 revision of the National Curriculum for English
schools 11-16 and at a time of several major policy
initiatives in education. Some of this background is set
out in Appendices 2 and 3.

Membership of the group was carefully chosen to include
those with experience in: (a) teaching mathematics in
state and independent schools and colleges, in initial
teacher education and in higher education; (b) conducting
research in mathematics (including geometry) and in
mathematics education; (c) applying mathematics
(including geometry) in disciplines such as science,
engineering, IT and finance, and; (d) planning and
implementing mathematics curricula in Local Education
Authorities (LEAs) and government agencies. A variety of
groups have expectations of the mathematics curriculum
and its geometrical content; some of these are considered
in Appendix 4.
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Geometry is one of the longest established branches of
mathematics. It has an extensive range of applications
and we give some selective historical and cultural
background in Appendix 5. Geometry has been
accorded a central place in mathematical education in
Western culture for a considerable period of time. One
of the major achievements of classical geometry was the
systematic collection by Euclid of the geometrical
knowledge of the ancient Greeks. This has, until
comparatively recently, formed the basis for much of the
geometry taught in schools.

During a period of educational reforms in mathematics
in the 1950s and 1960s some new syllabuses
(sometimes called ‘the new maths’) were developed
where the emphasis was on formal structures which
were predominantly algebraic. At the same time, the
range of approaches to geometry was broadened from
its traditional Euclidean base (which was reduced in
depth) to include the use of transformations, vectors,
matrices and some topology. 

In recent years many countries have been reviewing the
aims, content and approach of their geometry curricula.
The 1995 study by the International Commission on

Mathematics Instruction (ICMI) [Mammana and Villani,
1998] revealed that no clear consensus was emerging
about the outcome of these reviews. The small scale
research study into the geometry curricula of a number of
countries commissioned in 2000 by the Qualifications and
Curriculum Authority (QCA) for England confirmed this. 

Against this background the working group considered
the rationale for a geometry curriculum, its possible
content and issues concerned with its effective
teaching. Our report sets out a number of
recommendations on issues where the working group
reached a consensus view. There are some matters on
which the working group did not reach a conclusion,
and which others may wish to pursue further. There are
also some matters which the working group did not
address. In order to help identify major issues raised, the
report is structured around a number of agreed Key
Principles. These are presented together with
explanations, supporting arguments and, where
available, evidence. Additional information and
exemplification are provided in appendices and on the
Royal Society website at www.royalsoc.ac.uk  One or
more recommendations are associated with each Key
Principle.
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Key Principle 1: Geometry should form a significant
component of the mathematics curriculum for all
students from 11 to 19.

This is a simple proposition to express yet it has many
facets. First we consider some issues about the role of
geometry in education. Then we consider the relation of
geometry to other aspects of the mathematics
curriculum. We review some of the problems associated
with teaching aspects of geometry and pave the way for
other key principles which stem from this. 

A valid case for the study of geometry may be made on
several grounds. Geometry is a central part of
mathematics, and geometrical thinking is a
fundamental way to engage with mathematics.
Geometry can be used to develop students’ spatial
awareness, intuition and visualisation. It can also be
used to solve practical problems. There are many
applications of geometry relevant to employment and
everyday life. Other subjects in the curriculum, such as
science and technology, make use of geometrical ideas
and techniques. Geometry is well established in our
culture and has an interesting history of its own. It has
an important place in the development of aesthetics
and design. It can be used to encourage the
development and use of conjecture, deductive
reasoning and proof. Geometry can also be used to lay
foundations for further studies in mathematics.

It is our view that all of these grounds, which have often
been cited in the past, remain valid reasons for the
inclusion of geometry as a significant part of the current
curriculum. There are additional grounds that reflect
recent changes in our society. 

The rapid development in a range of technologies means
that citizens now and in the future will interact with a
variety of forms of displayed images. These may be
required by their work, be needed in order to exchange
information or just be associated with leisure. A case can
thus be made that geometry has a role to play within the
development of citizenship in enabling students to
interpret, manipulate, control and create such images.

In recent years there has been a major shift in the UK

economy from manufacture to services. Associated with
this has been a marked increase in demand for those
with good skills in flexible thinking and the use of
Information and Communication Technology (ICT),
together with the ability to apply mathematics
(inadequately referred to as ‘numeracy’ skills). A direct
consequence has been the much publicised problem in
recruiting and retaining mathematics teachers. In order
to fulfil the skills needs of industry, commerce and the
professions - including teaching - we need to encourage
more students to engage positively with mathematics
and to choose to continue their studies in it, or related
disciplines. We believe that geometry is a subject of
mathematical study which has its own appeal and
satisfaction and which, well taught, could encourage
more students to continue with the study of
mathematics beyond 16.

Breadth of study in geometry needs to be provided to
meet the demands outlined above. To ensure students
also receive appropriate intellectual challenges and
stimuli it is important to provide depth in a number of
topics. The challenge, of course, is to do both within a
fair share of the time which should be allocated to
mathematics teaching. 

We conclude this first Key Principle with two
recommendations. We believe that geometry has
declined in status within the English mathematics
curriculum and that this needs to be redressed. It should
not be the “subject which dare not speak its name”.

Recommendation 1:   

We recommend that curriculum and assessment
specifications be reviewed to ensure that geometry
forms a significant component of the mathematics
curriculum for all students from 11 to 19.

Recommendation 2:   

We recommend that the title of the attainment
target Ma3 of the National Curriculum be changed
from ‘Shape, space and measures’ to ‘Geometry’.
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Key Principle 2: Any choice of curriculum should be
underpinned by a rationale. 

Here we work towards defining a set of objectives
against which to evaluate the geometrical content of a
curriculum. First we summarise the current position
regarding the 11-16 curriculum for the maintained
sector in England. 

The English educational system, centrally administered
by the Department for Education and Skills1 (DfES), is
organised around a number of relatively autonomous
agencies and units. These include the Qualifications and
Curriculum Authority (QCA), the Office for Standards in
Education (Ofsted), the Teacher Training Agency (TTA)
and the British Educational and Communications
Technology Agency (BECTa).

Schools and colleges have already had to adapt to
considerable changes in very short time scales. So,
rather than attempting to develop a geometry
curriculum from first principles, we have chosen to
review the current curriculum. 

First we consider issues concerned with the teaching of
mathematics in England in secondary schools to pupils
aged 11-16. The QCA published a revised version of the
National Curriculum for England in 1999 for
implementation in schools and colleges from
September 2000. The mathematics curriculum at Key
Stages 3 (ages 11-14) and 4 (ages 14-16) differs from
the earlier version in a number of respects. In particular
the new version details the curriculum separately for
each Key Stage, whereas the earlier version combined
Key Stages 3 and 4. It also divides the Key Stage 4
curriculum into two programmes of study called
‘mathematics foundation’ and ‘mathematics higher’.
The geometrical content of the new curriculum is
described within the section Ma3 Shape, space and
measures. It is described in much greater detail than in
the previous version. It has been suggested that the
earlier version gave scope for teachers to address the
items of geometrical content found in the 1999 version.
However it is our experience that some significant
aspects of geometry in the new version, particularly in
the higher programme at Key Stage 4, are not currently
taught extensively in secondary schools. 

The working group considered the way in which the 11-16
mathematics curriculum is presented, and currently
examined. At Key Stage 3 there is a single curriculum for
all pupils. At Key Stage 4 it is divided into two. It is
anticipated that roughly half of pupils will not study

many of the additional aspects of mathematics
contained only in the higher programme of study.
Currently the examinations for mathematics in the
General Certificate of Secondary Education (GCSE) are
set in three tiers: foundation, intermediate and higher.
The introduction of separate programmes of study
alongside the use of three examination tiers raises a
number of issues. The working group chose not to
consider alternative ways of packaging the curriculum
as these structures have implications for the whole
mathematics curriculum, not just geometry.

The original National Curriculum has gone through two
sets of revisions; neither of these has provided a
rationale for the content of the mathematics
curriculum. In our discussions, we identified a clear need
to provide a set of objectives against which curriculum
content should be evaluated and which we now provide
in the form of a recommendation to improve the focus,
coherence and relevance of geometry teaching. 

Recommendation 3: 

We recommend that the geometry curriculum be
chosen and taught in such a way as to achieve the
following objectives:
a) to develop spatial awareness, geometrical

intuition and the ability to visualise; 
b) to provide a breadth of geometrical experiences

in 2- and 3-dimensions;
c) to develop knowledge and understanding of,

and the ability to use, geometrical properties
and theorems;

d) to encourage the development and use of
conjecture, deductive reasoning and proof;

e) to develop skills of applying geometry through
problem solving and modelling in real world
contexts;

f) to develop useful Information &
Communication Technology (ICT) skills in
specifically geometrical contexts;

g) to engender a positive attitude to mathematics;
and

h) to develop an awareness of the historical and
cultural heritage of geometry in society, and of
the contemporary applications of geometry.

From the analysis of the current geometry curriculum a
number of questions emerged to which the working
group has worked to find answers:
• How should the geometrical content be determined?
• Does the content of the revised Ma3 curriculum form
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an appropriate basis for the teaching of geometry in
secondary schools at Key Stages 3 and 4?

• If not, how should it be modified?
• What suppositions are made about the time available

for teaching mathematics, and its geometry
component, and are these acceptable?

• What issues need to be addressed if it is to be taught
effectively?

• How do assessment procedures impact on teaching?
• What are the implications for teaching geometry pre-

11 and post-16?

There is no requirement for the development of the
National Curriculum to be based on evaluated field trials
and experiments to test feasibility. Nor are such
developments necessarily linked with any associated
professional development for teachers, or with any
development of appropriate teaching materials or
assessment. Thus, in the absence of evidence, it has to
be a matter of judgement whether the geometry
selected for inclusion in the content of the National
Curriculum defines an attainable curriculum.

The Ma3: Shape, space and measures component of
the 1999 National Curriculum certainly exhibits a
breadth of study in geometry (see Appendix 6). It is the
view of the working group, led by the experienced
school teachers amongst us, that given the right
circumstances it can provide an appropriate, interesting
and attainable curriculum. We shall discuss what we
mean by the right circumstances later in this report.

Before considering the curriculum content in greater
detail we consider some recent changes in the way the
mathematics curriculum is implemented and
developed. The first of these is the model followed by
the National Numeracy Strategy (NNS) in primary
schools, which is now being extended to mathematics
at Key Stage 3 in secondary and middle schools. The
second is the 3 year project concerned with the
teaching of algebra and geometry now being
conducted by the QCA.

The National Numeracy Strategy is managed by the
DfES’s Standards and Effectiveness Unit (SEU). It has
developed a year by year framework for teaching Key
Stages 1 and 2 of the mathematics National Curriculum.
This is based on work carried out in over 200 pilot

schools. Associated with the detailed teaching schemes
has been a large scale professional development exercise
involving LEAs, headteachers, mathematics coordinators,
classroom teachers, governors etc. It has thus served as a
national medium for the interpretation and
implementation of the established curriculum. The
government has extended the work of the Strategy first
into Year 7 (the year of entry to most secondary schools),
and more recently into the whole of Key Stage 3. The Key
Stage 3 mathematics strategy comes into national effect
in September 2001 after a short pilot stage. Apart from
the way it is being introduced, there are other differences
between the primary and secondary strategies, among
the most pressing of which is the current shortage of
qualified mathematics teachers in secondary schools. We
welcome the opportunities for the improvement in
mathematics teaching in secondary schools which this
large scale development has the potential to stimulate. In
the latter stages of our work an observer from the Key
Stage 3 mathematics strategy joined the working group
in order to ensure better linkage between our conclusions
and recommendations and the way the Key Stage 3
strategy will implement the teaching of Ma3. Brief
examples from the current framework for mathematics in
Years 7, 8 and 9 appear in Appendix 7, and there are links
to the full document on the Royal Society website at
www.royalsoc.ac.uk

An earlier working group of the Royal Society and JMC
produced a report on the teaching of algebra pre-19
[Royal Society / JMC 1996]. The DfES is now supporting
a 3 year study by the QCA into the teaching of Algebra
and Geometry. This has already commissioned
international studies into the teaching of those aspects
of mathematics. See also Appendix 2 for a brief
discussion of international trends. We welcome the
opportunity which this new project offers to implement
our recommendations for the teaching of geometry. We
also welcome the extended time scale for this project. 

Recommendation 4:

We recommend that the current geometrical
content of the English secondary school
mathematics National Curriculum be regarded as a
reasonable basis for an appropriate and rewarding
geometry education for all pupils.
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Key Principle 3: The geometry curriculum should
maintain breadth, depth and balance, and be consistent
with Key Principle 2 and the objectives in
Recommendation 3 and Appendix 11.

In reviewing the curriculum we paid particular attention
to a number of important aspects of geometry related
to our recommended set of objectives.

Through tackling, and solving, problems in geometry
(both closed and open ended) pupils can develop
‘thinking skills’ of reasoning, enquiry (which includes
problem posing and conjecturing) and creativity. They
can also develop their geometrical intuition and extend
their powers of visualisation and spatial thinking. These
aspects are considered further in Appendix 8.

An important aspect of geometry is concerned with the
development of deductive reasoning and proof. Of
course proof is not confined to geometry alone, and
there can be interactions, such as algebraic results
proved geometrically and vice versa. However the use of
geometry as a vehicle for the development of the
understanding and use of deductive reasoning has
received relatively little emphasis in the English school
curriculum over the last 30 years. 

For a variety of reasons, the whole issue of proof within
school geometry has become emotive. In some minds it
is associated with a particular style of teaching and
examining sometimes pejoratively, and erroneously,
associated with the name Euclid. In others, it is regarded
as the essential difference between mathematics and
the experimental sciences, and as an essential tool for
the further study of mathematics. The working group
has had many interesting discussions about the place of
geometrical proofs within mathematics, particularly at
Key Stages 3 and 4. We have also received advice from
individuals and bodies representing many shades of
opinion - with a strong representation in favour of
geometrical proof from correspondents in Higher
Education and from some school teachers. We have
concluded that it is important for all students to
encounter proof during their study of geometry, while
also recognising that some aspects of proof may be
more accessible in other mathematical contexts. For a
discussion of what we mean by proof see Appendix 9. 

There is no suggestion here to attempt an axiomatic
approach to school geometry. Indeed we note that such
attempts have been made, unsuccessfully, in the past.
Rather we are arguing for the use of logical argument,
which builds upon what is already known by the pupil in
order to demonstrate the truth of some geometrical
result, possibly one conjectured by the pupil after
conducting a well chosen experiment. The results

concerned (i.e. the theorems) should be chosen as far as
possible to be useful, interesting and/or surprising. The
level of sophistication expected in the logical argument
will depend upon the age and ability of the pupil
concerned, and the proof produced might equally be
called an ‘explanation’ or ‘justification’ or ‘reason’ for
the result. Many pupils may never reach the level of
providing formal proofs of results (although the more
able should), but all should understand deductive
reasoning and that it is more than simply stating a belief
or checking that the result is valid in many specific cases.
Encouraging pupils to be critical of their own, and their
peers’, explanations will help them develop the
sophistication and rigour of their arguments. The
emphasis at all times should be on understanding, and
analysing a proof of a standard theorem has a positive
role in understanding too. Without doubt, the end
result of a proof at this level should be an understanding
of why the result is true, not simply that a formal
argument proves it. However, we accept that it is not an
easy matter to determine how to achieve this with each
pupil and each result and that a careful choice of
approach will be needed. Some examples of proof in a
variety of areas and styles appear in Appendices 9 and
11.

We are aware that there are considerable difficulties to
be overcome in achieving our objective “to encourage
the development and use of conjecture, deductive
reasoning and proof” (Recommendation 3d). We do
not have a successful experience base to fall back on,
nor have we found that other countries have positive
lessons to offer. We have found that many teachers
currently in post or in training do not have experience in
using geometrical reasoning themselves. We consider
the implications of these issues in Key Principle 7 below.

Mathematical reasoning is one strand of a fundamental,
and unusual, area of the mathematics National
Curriculum called Using and Applying Mathematics. We
now consider its other strands which relate to
communication and problem solving. In previous
versions of the National Curriculum this area was
described as a separate component, Ma1. In the current
version it has been integrated within each of the other
three components, including Ma3 Shape, space and
measures. The working group accepts that it is
important for all students to appreciate the power of
mathematics in the way it is applied in modelling
important phenomena and solving practical problems -
and that this applies equally in geometry as in other
areas. We have concluded that it is important for all
students to experience the applicability of geometry
through engaging in mathematical modelling in 2- and
3-dimensions. Geometrical ideas are used in many
models which pupils will encounter and use in the
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future. We are aware of the possibly confusing nature of
the word ‘model’ in this context. By a ‘mathematical
model’ we mean a representation through the language
of mathematics of a real world problem. ‘Modelling’ is
the process of translation into mathematics, usually
involving simplification and idealisation. This modern
use of the word recognises that this process of
translation is itself a skill to be learned. It also recognises
that the resulting mathematics will never be a perfect
description of the original problem. We give some
examples of the ways in which geometry can be used in
school to model familiar situations in Appendix 10.

Another important feature of the geometry curriculum
is that it provides opportunities for pupils to draw
sketches, diagrams and accurate representations. We
give just a few examples. Pupils can learn to use the
properties of figures, such as isosceles triangles,
rhombuses and kites, to develop mathematically exact
constructions on paper with straight-edge and
compass. They can explore whether sets of the same
figures can be arranged to tile the plane. They can
explore and apply properties of standard figures, as well
as constructions, on computers using suitable geometry
software. They can produce plane sections of 3-D
objects to apply their knowledge of 2-D figures in
solving problems in 3-D. They can sketch perspective
drawings of 3-D objects from different viewpoints. They
can make nets from which to construct 3-D solids.

The section on Transforming Secondary Education in the
Green Paper, ‘Schools, Building on Success’ of February
2001 includes the following:

4.29 The goals of our Key Stage 3 strategy are to
ensure that by age 14, the vast majority of pupils have:
....... Learnt how to reason, to think logically and
creatively and to take increasing responsibility for
their own learning.

Responsibility for the development of pupils’ thinking
skills now comes within the ‘Teaching and Learning in
the Foundation Subjects’ component of the
government’s Key Stage 3 strategy. The working group
welcomes this recognition of the importance of
thinking skills and recommends that the national Key
Stage 3 strategy makes use of the geometry component
of the mathematics curriculum for the development of
such skills.

So, consistent with our stated objectives, the working
group advocates striking a balance between the
creative, deductive and applicable aspects of geometry.

Recommendation 5: 

We recommend that the mathematics curriculum
be developed to encourage students to work

investigatively, demonstrate creativity and make
discoveries in geometrical contexts so that
students develop their powers of spatial thinking,
visualisation and geometrical reasoning.

Recommendation 6: 

We recommend that the mathematics curriculum
be developed in ways which recognise the
important position of theorems and proofs within
mathematics and use the study of geometry to
encourage the development of logical argument
appropriate to the age and attainment of the
student. 

Recommendation 7: 

We recommend that the mathematics curriculum
be developed to provide ample opportunities for
students to use geometry for practical problem
solving through mathematical modelling in both
2- and 3-dimensions.

We now consider what might be missing from the
current curriculum. The first matter we identified is the
need for much greater attention to 3-D geometry at
each stage of the curriculum for all pupils whatever their
ability. It is simplistic just to note that we live in a 3-D
world and need to be able to develop the geometrical
skills to represent 3-D objects and to solve problems
involving them. Clearly 3-D modelling is of great
importance in a wide range of disciplines, such as
science, engineering and design. We now come into
contact with a much wider range of 2-D representations
of 3-D objects than was previously the case. Spatial
awareness, powers of visualisation and realistic means
of applying geometry cannot be developed successfully
without paying greater attention to work in 3-D. So we
propose that in the 11-16 curriculum students should
extend their understanding, skills and knowledge of
geometry in the plane to solve problems in 3-D. Of
course, some 3-D work relies on 2-D results which will
need to be established first.

The revision of the National Curriculum by QCA in 1999
gave the opportunity for greater exemplification of the
ways in which Information and Communication
Technology impacts on many subjects and their
teaching. Yet there is very little specific reference to the
use of ICT in the mathematics National Curriculum in
general, and in geometry in particular. Geometrical
software is now widely used in, for example,
engineering and design. Through government and
commercial initiatives many secondary schools and
colleges have acquired powerful Computer Aided
Design and Computer Aided Manufacture (CADCAM)
packages for use in teaching Design and Technology. By
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contrast relatively few schools have access to software
for teaching geometry in mathematics. Yet by using
such software in appropriate ways, pupils can apply
their ICT skills to increase their knowledge and
understanding of geometry.  The software also provides
them with the opportunity to acquire and practise
geometrical skills. Opportunities occur when pupils
create, analyse and interpret dynamic spatial images;
make and test conjectures about geometrical
relationships that they can manipulate; and record and
present the results of their investigations. 

As with any approach to teaching, the educational use of
ICT needs to be well thought through and carefully
planned. The TTA has produced documentation to
accompany the current programme of lottery funded ICT
training for all teachers in which it emphasises the
importance of a critical approach to the use of ICT. This
expects teachers to know where, when and how to apply
ICT to enhance the teaching and learning of their
subjects. This advice is particularly important in geometry
where a variety of approaches is needed including
mental, practical, and ICT enhanced work. Increasingly
powerful software is becoming available in education,
such as that designed for simulations in science and
geography, much of which relies on sophisticated
mathematical algorithms. Pupils and teachers in all
subjects need to be cautious about accepting computer
produced results without question, and mathematics is
probably the subject best placed in the curriculum in
which to engender a critical approach. In teaching
geometry, caution is particularly needed to avoid making

assertions based solely on computational illustrations. 

Thus the working group would like to see further
development of the curriculum with respect to work in
3-D and the use of ICT. Appendix 11 on 3-D geometry
gives examples of five topics that are suitable for
schools. We recognise that this will have implications for
resources, materials, assessment and teachers’
professional development, as will the effective
teaching of proof, modelling, problem solving and other
aspects of geometry. In many respects we need to
develop a completely new pedagogy in geometry. We
consider such issues further below. We also recognise
that we are advocating an extension of the current
curriculum, even before it has been fully implemented.
Conscious of the potential criticism for proposing to
extend an already crowded curriculum we address the
issue of time allocation for mathematics below.
Experienced teachers have developed their own
mechanisms for setting out the curriculum in such a way
that links can be made and time used most effectively. In
Appendix 12 we include an extract from a possible
framework for the extended geometry curriculum
devised by some members of our working group.

Recommendation 8: 

We recommend that the geometry curriculum be
developed to give greater emphasis to work in 
3-dimensions and to make better use of
Information and Communication Technology (ICT). 
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Key Principle 4: Geometry should be given a higher
status, together with a fair share of the teaching time
available for mathematics.

Recently there has been a tendency to replace the word
‘mathematics’ with ‘numeracy’, as if the two were
equivalent. This has sent out mixed messages about the
relative importance of different aspects of the
mathematics curriculum. For example, within the pages
of the DfES The Standards Site on the Internet
(www.standards.dfee.gov.uk/numeracy/) the following
description of the National Numeracy Strategy may be
found:

Framework for teaching mathematics
The Numeracy Framework helps teachers raise
numeracy standards nationwide by providing
them with a set of yearly teaching programmes,
key objectives and a planning grid. 

Similarly the introduction to the government Green
Paper, Schools: Building on Success, published in
February 2001, contains the following:

Every secondary age pupil must be competent in
the basics of literacy, numeracy and ICT and
experience a broad curriculum beyond.

We are concerned that this concentration on numeracy
should not result in the sidelining of geometry. 

Recommendation 9: 

We recommend that the use of the word
‘numeracy’ in government publications and
announcements be replaced by ‘mathematics’ to
ensure that geometry is accorded its rightful
position.

While accepting that the area called Ma2 Number and
algebra in the secondary school curriculum should have
the greatest amount of teaching time, we regard 25%
of the available mathematics time as the minimum
necessary for the teaching of geometry in Ma3. We are
concerned about reports from some secondary schools
that there has been an erosion in the total time available
for teaching mathematics, particularly in Key Stage 3 -
perhaps exacerbated by teacher shortages. Primary
schools following the NNS have a daily mathematics
lesson which, by the end of Key Stage 2, lasts one hour.
Secondary schools following the new Key Stage 3
strategy have been given guidelines for the time to be
allocated to mathematics - at least 3 hours per week.
Members of the working group have also expressed the
view that if mathematics is to have parity of esteem with

the other core subjects of science and English then it
should be available as a double award at GCSE. 

We do not have specific proposals to make about the
teaching of geometry in primary schools. The National
Curriculum at both Key Stage1 (pupils aged 5-7) and
Key Stage 2 (pupils aged 7-11) has the Ma3 Shape,
space and measures component. The NNS’s Framework
for teaching mathematics from Reception to Year 6
provides an interpretation of this within the framework
of the daily mathematics lesson. Provided that this
curriculum is effectively implemented, then pupils
transferring from primary schools to Year 7 in secondary
schools should have a suitable basis on which to
develop their study of geometry.

The working group is aware that the effective teaching
of the secondary school geometry curriculum which it
advocates is likely to require rather more time for
geometry than is currently normally the case. The
renaming of Ma3 to ‘Geometry’ should imply that the
work on non-geometrical measures, such as time and
speed, is relocated in Ma2. Some aspects of Ma2
Number and Algebra could be developed within
geometrical contexts, such as Pythagoras’s Theorem.

Questions have been raised about the time, and
assessment, allocation to Ma4 Handling Data, and even
as to whether it should be part of the mathematics
curriculum at all. However we do not wish to make any
recommendations in respect of the content of this, or
other, parts of the mathematics curriculum. That is not
to duck the issue but to record that it is for others to
assess the strength of our claims for geometry against
those of other parts of the curriculum. We have already
pointed to the lack of a sound experience base for an
appropriate pedagogy for significant aspects of the
geometry curriculum, for which there is an urgent need.
It could well be that with the right approach, supported
by appropriate materials and resources including ICT,
the teaching of geometry could also be made more
efficient. In summary we believe that a broad, coherent
and demanding geometry curriculum can be effectively
taught within a fair and reasonable time allocation. This
may require some review of the balance between the
components of the mathematics curriculum. It will
certainly require the development of more effective and
efficient teaching approaches. 

Recommendation 10: 

We recommend that geometry should occupy 25%
- 30% of the teaching time, and hence a similar
proportion of the assessment weighting, in the 
11-16 mathematics National Curriculum.
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Recommendation 11: 

We recommend that the total time allocated to
mathematics 11-16 be monitored to ensure

students spend at least 3 hours a week on
mathematics, so that sufficient time is given to the
teaching of geometry, and to other aspects of
mathematics.
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Key Principle 5: Students in 16-19 education should
have the opportunity to continue further their studies in
geometry.

The government has implemented reforms in the post-
16 sector called ‘Curriculum 2000’. Students are now
encouraged to follow a programme of study which
includes key skills, among which is the ‘Application of
Number’. For most students this will be the only course
of mathematics they study post-16. Consistent with our
first Key Principle, we propose that its title should be
changed and its content extended so that students
study material from a wider range of topics in
mathematics, including geometry. There should be
more compulsory elements of geometry which are
assessed through tests, and which make explicit the
opportunities to develop geometrical ideas in greater
depth for inclusion in the portfolio.

The QCA have also recently revised their criteria for the
mathematics General Certificate of Education
Advanced Subsidiary and Advanced Level (AS- and A-
level). Awarding bodies have now produced
specifications that are being taught for the first time in
the current academic year. The geometry in the
compulsory part (core) of pure mathematics for A-level
consists of a very small amount of coordinate geometry
(lines and circles), some trigonometry and some
elementary work with vectors. Within the current
framework there is little scope for more geometry in the
core, but more use could be made of geometrical
contexts, say in the application of calculus. The working
group doubts that the current geometrical content of A-
level mathematics forms a suitable foundation for those
students who go on to study science or engineering.  In
particular there should be greater emphasis on work in
3-D.

The working group has discussed the possibility of
introducing one or more optional modules at AS- and A-
level, outside the core of pure mathematics, which
could include extensions in geometry. Potential
drawbacks of such a solution would be the increase in
the variety of routes to an award - leading to problems
of comparability of standards, and also a greater variety
of mathematical backgrounds of students taking the
same course in higher education. We do not have an
instant solution to propose with regard to improving the
geometrical content of AS- and A-level mathematics in
their current format. When a fundamental review of
these qualifications takes place the working group
recommends that careful consideration be given to
extending the amount of geometry in the A-level core.
Candidates for an extension to such content include
plane curves, such as conics, further vector geometry
and a greater emphasis on parametric representations.

We would expect a greater emphasis to be given to the
important role of coordinate geometry as a link
between algebra, graphs and functions, and calculus.

More generally there is reason to believe that the
existing choice of optional modules (mainly in
mechanics or statistics) does not meet the needs or
interests of all potential candidates for A-level
mathematics - such as those with an interest in
aesthetics, or an intention to pursue careers in the IT
industry. Currently about 60 000 of the c.230 000 A-
level candidates enter for A-level mathematics. The
uptake in mathematics at this level might be increased if
there was a wider choice of modules, one or more of
which included interesting geometry. We understand
that evidence is beginning to emerge that the number
of students taking AS-level mathematics as a fourth
subject in the lower sixth-form (Year 12) and then not
choosing to progress to A-level mathematics in the
following year is higher than anticipated. However the
working group is aware that much of this is speculation,
and so we recommend that research be undertaken into
the mathematical needs and interests of post-16
students, and the implication for the curriculum.  Our
conclusion is that both the structure and the content of
AS- and A-level mathematics are in need of a
fundamental review.

Candidates who wish to extend their post-16 study of
mathematics can study A- or AS-level Further
Mathematics, although numbers doing so have been
dwindling. In the 1980s around 12 000 students were
taking ‘double mathematics’ each year at A-level,
whereas in the late 1990s this had levelled out at just
over 5000 taking A-level Further Mathematics, and
around 2000 taking AS-level Further Mathematics –
despite the growth in the numbers within the A-level
cohort. A major factor has been the problem of
maintaining financially viable group sizes in schools and
colleges. The Gatsby Foundation is supporting a project
to make these courses more widely available to students
through distance learning. We welcome such initiatives
to encourage greater take up of these courses, as
students taking such qualifications are much better
placed for success in undergraduate studies in
mathematics, physics and engineering. Similar
arguments apply about making these courses more
interesting and challenging by including both more
geometry and the greater use of geometrical contexts. 

There is now a range of post-16 qualifications called
‘Free Standing Mathematics Units’ (FSMUs) which are
designed to support students in their other studies and
which should enable more students to pursue
mathematics post-GCSE. The FSMUs are available at
three levels. There are some FSMUs which include
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geometry, but none at level 3, the advanced level. We
recommend that a geometry unit be developed at level
3. In Autumn 2001 a new AS-level qualification called
‘Use of Mathematics’ is to be introduced, based on
advanced level FSMU modules. The working group had
understood that this new qualification was intended for
students who would not otherwise take a post GCSE
mathematics course, such as those specialising in the
arts, humanities and social sciences. At the time of
writing, the qualification is still in development but it
appears that it will now be predominantly a course in
mathematical modelling with no geometrical content at
all. Thus there would still appear to be a gap in the
market for an AS-level qualification in mathematics
which will appeal to students specialising, say, in the arts
and humanities and for whom geometry might be an
attractive element of study.

The working group believes that there is still more to be
done to ensure that there is a sufficient range of level 2
and 3 mathematics qualifications to attract greater
numbers of students to continue their studies in
mathematics post-16. We recommend that the range of
level 3 mathematics qualifications be reviewed to
ensure that students have the opportunity to study
geometry further. In particular the cultural, aesthetic
and historical aspects of geometry, such as the
development of perspective, should be of considerable
appeal to many of those students from the arts and
humanities who currently drop mathematics. 

The Royal Society website provides links to current
specifications of post-16 mathematics qualifications.

We consider that Curriculum 2000 may have an adverse
effect on mathematics, stemming partly from its
complexity and rigidity. However as major changes to
16-19 education are currently being implemented, it is
not the time to make any detailed recommendations
with respect to specific mathematics qualifications.
Thus we make the following general recommendations.

Recommendation 12: 

We recommend that a fundamental review be
made of all 16-19 mathematics provision. This
should include considering how:
a) the structure and content of the current AS/A-

level Mathematics and Further Mathematics
specifications can better meet the needs of
students and include a greater emphasis on
geometry; and

b) other post-16 mathematics qualifications, such
as Free Standing Mathematics Units and AS-
level Use of Mathematics, can enable students
to have the opportunity to continue their study
of geometry.

Recommendation 13: 

We recommend that in the 16-19 curriculum the
key skill, ‘Application of Number’, be re-titled
‘Application of Mathematics’ and that the range of
qualifying mathematical studies be broadened so
that students continue their study of geometry.

The Royal Society16 | July 2001 | Teaching and learning geometry 11-19



Key Principle 6: The assessment framework for the
curriculum should be designed to ensure that the full
range of students’ geometrical knowledge, skills and
understanding are given credit.

We do not believe that many of the geometrical
objectives in Recommendation 3 can be adequately
assessed within the current framework of timed tests
and examinations. Indeed, the current assessment
framework is one of the major reasons why important
aspects of geometry, such as work in 3-D, geometrical
reasoning and the use of ICT have not been given
sufficient attention in classrooms. It is only natural that
teachers concentrate on aspects of a curriculum which
carry the greatest assessment weighting - especially
within the current climate of target setting in schools.   

A number of questions set in national tests and
examinations which are apparently about geometry are
in practice mainly exercises in algebra. We would like to
see national tests and examinations incorporate
questions which test geometrical reasoning and
applications of geometry. If, as we suspect, there is little
experience in doing so, then we recommend that the
QCA commissions work to develop more appropriate
forms of examination questions in geometry. 

GCSE examinations in 2003 will contain a compulsory
course work element. This will consist of two extended
tasks each contributing 10% of the total marks. One of
these has to be from Ma4 Handling data. The other is to
demonstrate skills from Using and applying mathematics
in the context of either Ma2 Number and algebra or Ma3
Shape, space and measures. The working group
welcomes to some extent this extension of assessment
techniques but queries the rationale used to make Ma4
compulsory and not Ma3. We consider that the
opportunity afforded for extended work in Ma3 would be
an effective way to ensure that some of our objectives for
geometry teaching are more effectively fulfilled. We are
concerned that teachers faced with a choice between

Ma2 and Ma3 may reject geometry in favour, say, of
algebra - perhaps because of their own subject confidence
or because they judge the more algorithmic nature of
some forms of algebraic enquiry to be a ‘safer bet’. Thus
we recommend that GCSE mathematics should include
some compulsory course work in geometry. 

The examinable course work element in the new AS/A-
level mathematics course is almost entirely restricted to
the applications, such as statistics and mechanics. If, as
we recommend, greater opportunity is afforded to
students to extend their study of geometry on these
courses then a review of the appropriate means of
assessment is also needed. By contrast the FSMUs have
their own forms of assessment - usually 50%
examination and 50% coursework. Many units specify
and assess the use of appropriate ICT.

If the assessment framework for the curriculum in
geometry can be developed to include both better
examination questions and a reasonable contribution
from extended course work, then we believe that
teachers will also be encouraged to develop formative
assessments in geometry for their students. It is a wider
question than this working group’s remit to consider
whether teachers’ assessments of students’ progress
should contribute to National Curriculum assessment
and to public examinations. Such a change would
require the kind of reinstatement of teachers’
professional judgements which is discussed in the
recent government Green Paper [DFEE, 2001].

Recommendation 14: 

We recommend that a review be made of the
methods of assessment and examination used in
mathematics at Key Stage 3, at GCSE and in post-
16 qualifications to ensure that appropriate credit
is given for the attainment of specific geometrical
objectives. 
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Key Principle 7: The most significant contribution to
improvements in geometry teaching will be made by
the development of good models of pedagogy,
supported by carefully designed activities and resources,
which are disseminated effectively and coherently to
and by teachers.

We did not enquire further into the impact of different
forms of school organisation, such as ‘setting’ and
mixed-ability teaching, nor did we reach a consensus
about the issues arising from providing a more inclusive
curriculum or from providing some more differentiated
curricula. We anticipate that pilot studies in good
practice may provide some helpful guidance in respect
of these issues.

We now turn to the description of the 11-16 National
Curriculum. The phraseology used throughout is “pupils
should be taught to...”. The National Curriculum
handbook sets out in some detail what should be
taught, but not why, or how. A good deal of scope for
interpretation still rests with the teacher. We are aware
that a tendency has recently developed in teaching the
mathematics National Curriculum which breaks it down
into a large number of very limited objectives -
sometimes known as ‘bite-sized chunks’. Such an
approach can, and often does, result in fragmentation
and in the failure to develop important links between
curriculum areas. We believe that the successful
implementation of the Ma3 component in the
classroom will only be achieved if teaching programmes
are focused and coherent, and if they develop links
within geometry and mathematics generally where
appropriate. In Appendix 13 we give some examples of
ways in which aspects of the geometry curriculum could
be integrated within a particular theme, and also where
aspects of geometry could be linked with other areas of
mathematics such as algebra and handling data. 

Individual teachers implement the curriculum by planning
schemes of work and lessons for their classes. So it is a
matter of the greatest importance to ensure that teachers
have the necessary information, skills and resources to
interpret the aims and objectives of the curriculum.
Recent moves to ameliorate problems of recruitment and
retention of teachers, together with the government’s
intention to modernise working practices in health and
education, mean that there is now a much more
favourable climate for improving the system of teachers’
continuing professional development (CPD). The working
group welcomes the declared intention to provide CPD
support to improve and update teachers’ subject
knowledge and related pedagogy. 

Research, such as that reported by Hoyles and Healey,
has confirmed the views of experienced teachers in

schools that there are many teachers of mathematics
who have large gaps in their knowledge of geometry.
Similarly, we believe that there are also many teachers
who have been taught geometry through styles of
teaching which we would not advocate as appropriate.
Thus our view is that in respect of geometry teaching
there is a need for a significant CPD initiative.
Government is giving greater attention to spreading
good practice between teachers and schools through
initiatives, such as the beacon schools. The DfES (whilst
still DfEE) recently launched its CPD strategy. This has its
own website at: www.dfee.gov.uk/teachers/cpd where
CPD initiatives are presented under the strap line
“Learning from each other... Learning from what works”.
The working group welcomes this approach. We regard it
as vital that pilot studies should be carried out without
delay to identify and enhance good practice in the
teaching of geometry. At the same time planning should
take place for a national system of provision for CPD in
geometry and its teaching. This could be within the
framework of the Key Stage 3 strategy. One idea which
has received some support is the provision of two week
geometry summer schools for serving teachers, teachers
currently in training and those about to embark on a
course of initial teacher education (ITE). Financial
inducements may be needed to encourage attendance in
vacation time. By concentrating on subject knowledge in
geometry, as well as its teaching, such courses should
generate enjoyment of mathematics and thus help as one
part of the long term process of sustaining or renewing
teachers’ enthusiasm for it.

New graduates entering courses of initial teacher
education have very varied backgrounds in geometry.
Many will have experienced little, if any, geometry at
sixth form or university level. Within the current
statutory curriculum for the initial training of secondary
mathematics teachers there is little scope to provide the
rich overview of geometry that we believe is essential
for effective teaching. Further professional
development for teachers early in their career is
essential, but is most likely to concentrate on the
development of their teaching skills. So it is important
that, in parallel with developments in CPD to support
the teaching of geometry, there is a recognition of the
need to improve the geometrical background of those
intending to enter mathematics teaching during, or
before, their initial training.

In order to support the developments in the effective
teaching of geometry which we seek there is a need for
a variety of materials in both printed and digital form, as
well as resources such as models, posters, activity kits,
videos, libraries of digital images, computer software
and the like. Some of this already exists and we provide a
far from exhaustive list of these in Appendix 14. An
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important activity will be to review the current provision
and to develop new materials and resources as
appropriate.

Geometry teaching outside primary schools can be, and
has been, conducted with a minimal amount of
equipment - such as a stick of chalk and a piece of string
(echoing images of ancient Greeks drawing in the sand).
Our view is that teachers should now have at their
disposal an appropriate variety of equipment from
which to select, depending on fitness for purpose. In
particular we wish to see the potential of ICT realised in
supporting the teaching and learning of geometry.
There is already software available, such as for dynamic
geometry (DGS), but its use is not widespread. Many
schools do not have licences for the software. There is
also a need for the development of additional software,
such as to support work in 3-dimensions. Increasing
numbers of schools and colleges are now being
equipped with interactive whiteboards - where a
computer image is projected onto a touch sensitive
screen. This medium has considerable potential for
interactive whole-class teaching of geometry. We would
like to see the funding to schools for ICT being used
more effectively to support the geometry curriculum. 

The mathematics professional associations have a key
role to play in each of these developments in
partnership with the newly formed General Teaching
Council (GTC) and other bodies such as the Royal
Society, Higher Education institutions, the National
Numeracy Strategy, QCA, Ofsted, TTA and BECTa. 

Recommendation 15: 

We recommend that the relevant government
agencies work together with bodies, such as the
mathematics professional associations
represented on JMC, to provide a coherent
framework for supporting the development of
teaching and learning in geometry. This will
involve:
a) the recognition and development of good

practice in geometry teaching through pilot
studies and research;

b) the design of programmes of continuing
professional development and initial teacher
education; 

c) the production of supporting materials; and
d) the establishment of mechanisms to provide

supporting resources, including ICT.
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Key Principle 8: It is a matter of national importance that
as many of our students as possible fully develop their
mathematical potential. Geometry, with its distinctive
appeal, should make mathematics attractive to a wider
range of students. 

In launching UK Maths Year 2000, the Prime Minister made
clear the importance of mathematics in the education of
those creative and flexible thinkers on whom our national
economic prosperity will depend. The demands of
commerce and industry for articulate graduates with
mathematical skills far outstrips the supply of graduates in
mathematics and related fields. One consequence of this is
the current severe shortage of new teachers, especially for
mathematics in secondary schools. For a variety of reasons,
insufficient numbers of our ablest students are choosing to
pursue mathematics as a specialism following both GCSE
and AS/A-level. There is no universal panacea.  So it is vital
that we take any opportunity to review where and how the
subject could be made more interesting, attractive,
relevant, challenging, rewarding and engaging to all
students. We are convinced that geometry has a lot to offer
in this respect. For some students it may be the logical
aspects which are the most appealing, for others it may be
the visualising, or the modelling, or the historical and
cultural, or the visual and aesthetic aspects.  

In general we believe that students are not given
enough information about the importance of
mathematics in the world of work, and the significant
advantages a mathematical education can bestow in
terms of employability. The ways in which the

performance of secondary schools and colleges are
published through examination results takes no account
of the relative national economic importance of some
subjects over others. So, for example, there is a positive
incentive for institutions to persuade students to choose
subjects in which it is easier to achieve high grades at A-
level than those subjects judged harder, which include
mathematics and physics. 

Overall the profile of mathematics needs to be higher in
schools, colleges and universities if we are to attract
more students at all levels of attainment to realise their
potential in the subject. This means that still more needs
to be done to improve the status of mathematics
teaching, and to attract (and retain) good recruits. It also
means that students should be made more aware of the
relationships between mathematics and the other
subjects they study. We believe that geometry is a good
vehicle for achieving this aim.

Recommendation 16: 

We recommend, in terms of mathematics in
general, that:
a) better publicity and information be provided to

schools, students and parents about the career
opportunities afforded by studying
mathematics; and

b) ways be sought to encourage schools and
colleges to attract more students to study
mathematics post-16, particularly at A-level.
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For mathematics 11-16, we have concluded that the
geometrical content of the new National Curriculum,
with a few adjustments, forms an appropriate basis for
a good geometry education. In order for this to be
achieved, considerable changes are needed in the way
geometry is taught.  It is vital that those working to
improve mathematics education ensure that their work
contributes significantly to improvements in geometry
(as well as mathematics) teaching. Bringing about
improvements in geometry teaching will require a
significant commitment to a substantial programme of
continuing professional development, together with
the development of appropriate supporting materials. 

For mathematics post-16 we have concluded that there
are insufficient opportunities for students to build on
their 11-16 studies in geometry. Those concerned with
curriculum design need to review the structure of post-
16 qualifications in mathematics to ensure they provide
better opportunities for students to continue to study
geometry. More generally there is at present a severe
shortage of those with good mathematical skills - and
the provision of challenging and interesting geometrical
content and contexts should be a valuable means to
make mathematics a more attractive subject of study for
more students.

The Royal Society Teaching and learning geometry 11-19 | July 2001 | 23

11 Conclusion 





References

Cockcroft, W.H. (1982), Mathematics counts. Report of the Committee of Inquiry in Teaching of Mathematics.
London: HMSO.

DfEE & QCA (1999), Mathematics: The National Curriculum for England. London: HMSO.

DfEE (2001), Schools: Building on Success. Green Paper. London: The Stationery Office.

Hoyles, C. & Healey, L. (In press) Curriculum change and geometrical reasoning, in Boero, P. (ed) Theorems in School,
Dordect: Kluwer

Mammana, C. & Villani, V. (Eds.) (1998), Perspectives on the Teaching of Geometry for the 21st Century. Dordrecht:
Kluwer.

National Numeracy Strategy (2000), Framework for teaching mathematics: Years 7 to 9. London: DfEE (available
from http://www.standards.dfee.gov.uk/ keystage3/strands/mathematics/ )

Oldknow, A.J. & Taylor, R.N. (1999), Engaging mathematics: gaining, retaining and developing students’ interest.
London: Technology Colleges Trust.

Royal Society / JMC (1996), Teaching and Learning Algebra pre-19. Report of a Royal Society / JMC working group
chaired by Professor R Sutherland. London: The Royal Society.

Willson, W.W. (1977), The Mathematics Curriculum: geometry. London: Blackie / Schools’ Council. 

Glossary 

AS level Advanced Subsidiary Level – a qualification between GCSE and A-level
BECTa British Educational and Communications Technology Agency
CADCAM Computer Aided Design and Computer Aided Manufacture
CPD Continuing Professional Development
DfEE Department for Education and Employment (now replaced by the DfES) 
DfES Department for Education and Skills
DGS Dynamic Geometry Software
FSMU Free Standing Mathematics Unit
GCSE General Certificate of Secondary Education
GTC General Teaching Council
HE Higher Education
ICMI International Commission on Mathematics Instruction
ICT Information and Communications Technology
IT Information Technology
ITE Initial Teacher Education
ITT Initial Teacher Training
JMC Joint Mathematical Council of the United Kingdom
KS Key Stage (of the National Curriculum)
LEA Local Education Authority
Ma3 “Shape, space and measures” component of the mathematics National Curriculum 
NC National Curriculum
NNS National Numeracy Strategy
NOF New Opportunities Fund (a Government funding initiative)
Ofsted Office for Standards in Education
QCA Qualifications and Curriculum Authority
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QTS Qualified Teacher Status
SEU Standards and Effectiveness Unit (of the DfES / DfEE)
TIMSS Third International Mathematics and Science Study
TTA Teacher Training Agency
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1 Terms of reference

a) to make recommendations about teaching methods
and the content of the curriculum with relation to the
topic of geometry taught to pupils aged 11 to 19, in
order to inform discussions of any future curriculum
revisions;

b) to take into account evidence about current
competence and future needs in geometry among
different groups of pupils;

c) to examine the influences on pupils’ experience of
geometry within all aspects of the pre-university
education system, including vocational provision.
Whilst focusing predominantly on 11-19 provision,
account should be taken of the experiences of pupils
pre-11 to inform the study where appropriate.

2 Evidence received by the working group 

We are grateful to the following organisations and
individuals who made written submissions to the group:

Association of Teachers of Mathematics (ATM)
British Society for Research into the Learning of
Mathematics (BSRLM)
Heads of Departments of Mathematical Sciences
(HoDoMS)
Institute of Physics
Institution of Structural Engineers
London Mathematical Society (LMS)
Mathematical Association (MA)

Afzal Ahmed
Ron Allpress
Vernon Armitage
Keith Austin
Brian Bolt
David Burghes
Hugh Burkhardt
Bob Burn
Tandi Clausen-May
Randal Cousins
CTJ Dodson
David Fairlie
Chris du Feu
David Fielker 
Ruhal Floris 
Doug French
Tony Gardiner
Howard Groves
Keith Hamflett
Adrian Hill
Celia Hoyles

Graham Jameson
Gerry Leversha
John Mason (Open University) 
John Mason (University of Huddersfield)
Michael McIntyre
Les Mustoe
Alice Rogers
Kenneth Ruthven
Stuart Rowlands
Peter Saunders
Mike Savage
Robin Scott
Alan Selby 
Peter Shannon
John Sharp
John Silvester
Patricia Smart
Tony Sudbury
Garth Swanson
Patricia Watson
Nick Woodhouse
Derek Woodrow
Nicholas Young

3 Brief extracts from evidence received for
consideration by the working group 

prepared by John Rigby 

Submissions were received from organisations and
individuals, by invitation from the chairman and from other
members of the working group. The most widely held view
was that basic plane geometry, including such things as
proofs of angle and circle theorems, should be reinstated as
a major part of the high school mathematics curriculum. But
these extracts have been selected to show the range of
suggestions made and of views expressed; thus some
minority opinions have been quoted in detail, whilst other
valuable contributions have been omitted when they only
serve to reinforce the majority views about the importance
of proof and of geometrical and spatial intuition.

“The geometry that could figure in schools falls broadly into
two types: geometry as a study of spatial and logical
relationships and geometry as the visualisation of the real-
world or the visual illustration of other parts of mathematics
and of science. Both have their place, but it is work at the
appropriate level in the first type that enables progress to be
made in the other. ... It is essential that some logical
relationships between results are demonstrated.”
Heads of Departments of Mathematical Sciences (HoDoMS)

“Many more pupils could reach level 8 of the National
Curriculum by the end of Key Stage 3 if expectations were
higher. ... There are a number of topics which ought to be
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considered by many more pupils at an earlier stage. The
properties of parallel lines, a simple proof of the angle sum
of a triangle and the properties of polygons all seem obvious
topics for year 7. The theorem of Pythagoras should be
encountered by a wide range of pupils in year 9 and by the
abler ones in year 8. On the other hand there is no reason
why a formal knowledge of congruent triangles should be
developed before year 9, beyond a simple intuitive
understanding of the word congruent.”
The Mathematical Association

“[The members of the Education Training and Examinations
Committee] feel that a basic ability in geometry is vital for
engineers, particularly structural engineers, and that the
standard of geometry being taught in schools should be
raised. Geometry is a useful discipline not only in that it
teaches rigour of thought but also develops the ability of a
student to think spatially. ... Good spatial awareness can be
engendered at all levels of education without recourse to
mathematical justification at the initial stages.”
The Institution of Structural Engineers

“The reform in the teaching of Euclid meant its removal
because everyone assumed that Euclid could only be
taught in the way it was taught by the Victorians. What
we have now is ‘shape and space’ and the banishment
of proof. ... Greek geometry ought to be accessible to
every secondary school pupil, not as an exercise in rote
learning ... but as an induction into one of the
foundational disciplines of the mind.”
Research Fellow, University Department of Mathematics
and Statistics

“We live in a three dimensional world, a world full of
objects which interact with each other which is a far cry
from the geometry of points, lines and triangles
common to most school text books. ... What we teach
under the name of ‘geometry’ should help our pupils to
a better understanding of the space around them, of
the structures of the buildings, the bridges, the cranes,
furniture and the thousands of machines and
mechanisms that influence their daily lives.” 
University lecturer in mathematics education

“Three positive lessons emerge from this study [of
conflict between mathematics graduates’ proof
behaviours and their stated beliefs about proof]:
(i) the importance of establishing key mental schemas
(such as that associated with logical deduction, and
with precedence-respecting logical hierarchies) as early
as possible - probably beginning well before the age of
15-16;
(ii) the fact that it requires both systematic effort and
considerable time for students to internalise such subtle
mental schemas as that which lies behind proof, and
that this probably has to be done well before students
encounter the increased intensity which characterises
higher level mathematics courses; and
(iii) the central importance of providing a robust

template - such as a modified version of Euclid Book I, or
the standard sequence of ruler and compass
constructions - which students can use as a model for
the overall process of ‘local deduction plus precedence-
respecting logical hierarchy’ in mathematics.”
University reader in mathematics and mathematics
education

“The current school curriculum, particularly up to GCSE
but also even at A-level, fails to give pupils much idea of
the nature of mathematics as an intellectual subject. ...
Euclidean geometry is an ideal topic in this context,
since it can be handled at school level and give some
idea of the intellectual nature of mathematics.”
Chair of Mathematical Physics Group of Institute of
Physics, and ex-school teacher

“Engineers and engineering technicians need to be able
to use geometry to: lay out patterns on to surfaces for
manufacture, plot the trajectory of a robot arm,
understand the methods that are used in surveying, e.g.
for the siting of antennae.”
Head of university department of electronic engineering

“Geometrical and algebraic thinking belong together and
support each other; visual stimuli can be a source for
algebra, and algebra can be supported by and can inform
geometrical thinking. ... Drawing diagrams and
appreciating generality implied by a single diagram are non-
trivial experiences.”
University professor of mathematics education

“I see an increasing use of concrete (as opposed to abstract)
algebraic geometry in computer graphics, finite element
modelling and data approximation. ... Some relevant
introduction at school and university level is highly desirable:
topics such as transformation of 3D variables, de Castlejau’s
algorithm (Bernstein-Bézier polynomials) for shape
preserving, fitting piecewise lines to data or curves.”
University professor of computational mathematics

“We now teach Analytic Geometry as part of our first year
course. Before 1990, calculus was taught without such a
preliminary, because students used to come to us with
more background in geometry and logical reasoning.”
University lecturer in mathematics

“Coordinate geometry should have real geometrical
content and not just be a setting for exercises in algebra.
...It is important to develop both visual imagination and
logical reasoning.”
University pro-vice-chancellor and professor of
mathematics

“I do not think that there is any point in trying to learn
geometry as a spectator, by which I mean being shown
pretty pictures, being told certain geometrical facts, but
largely avoiding getting to grips with proofs, reasoning, and
problem-solving. ... (Dynamic geometry packages) are
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useful tools for the geometer, ... [but] I do not think that
playing around with these packages is any substitute for
learning how to construct and write out an argument.”
University lecturer in mathematics

“Symmetry was one of the themes of modern maths in
the late 1960s. There were attempts to develop a
secondary school geometry of symmetry, ... but they
never cohered enough to be generally adopted because
a gradual developmental sequence was not constructed
(integrating congruence with symmetry) and few
teachers had a background of elementary (and
surprising) theorems about symmetry which would have
let them match their psychological awareness of pupils
with steps forward in the subject. I regularly tried to help
student teachers have the background I refer to, and
again and again saw them operating splendidly with
symmetry in school - better than any textbook.”
Professor of mathematics education

“Geometry (in the late 60s) seemed to retreat in favour of
the new transformation geometry (followed later by the
further de-intellectualisation with the switch to making
patterns with flips, slides and turns.) ... I think there are two
major things which we lost with the demise of geometry. ...
The first important thing is the nature of proof. ... The second
important thing is the multi-step solution. The recent style of
mathematics examinations has led to children being
presented with the solution to problems already planned by
the question setter. All the children have to do is to complete
the one-step arithmetic manipulations in isolation.”
Grammar school head of mathematics

“I would like to see a move away from the culture which
regards geometry (and all of mathematics) as an
experimental science, in which general truths emerge as
mysterious laws of nature. The point of proof at school level
is that it provides explanations.”
University professor of (applied) mathematics

“Euclidean geometry promotes geometric intuition, it is a
good place for students to learn about formal proof, and it
is a good vehicle for teaching problem solving. These are all
obviously important for students who go on to study
mathematics at A-level and beyond, because they provide a
foundation on which to build. Even more importantly,
however, they are very important transferable skills. If they
are not included in the curriculum by age 16, many students
will never encounter them in as accessible a form and with
time to assimilate them properly.”
Education Committee of the London Mathematical Society

“[We should] re-instate a much fuller treatment of the conic
sections. One of the pinnacles of our subject is the story of
the deduction of the planetary orbits from Newton’s Laws.”
University professor of (applied) mathematics

“I would support moves to give geometry a more
significant role, but would be very concerned about the

fragmentation of the mathematics curriculum. We
seem to be moving towards an American style situation
with separate topics whereas the strength of
mathematics comes from a unified view.”
University professor of mathematics education

“We have noticed that through a practical approach in the
study of solid objects and computer simulations, most
pupils, including those in special schools, can access the
basic elements of study of shape and space. ... It is
interesting how easily the geometrical definitions emerge
and evolve and abstract structures are formed through this
form of investigation as compared to a deductive, formal
presentation of properties and definitions offered and
confined by the study of the theorems of Euclid.” 
University professor of mathematics education

“Greater emphasis needs to be placed on teaching
Euclidean Geometry in a practical way - taking pupils on
maths trails, estimating and measuring the height of
buildings, calculating the area of ‘odd shaped’ rooms for
carpets, etc. Pythagoras’s theorem should be introduced at
level 7 only after practical application. Many builders know
all about a 3,4,5 triangle but have no idea they are using
Pythagoras’s theorem.”
Primary school mathematics teacher

“A balance between informal practical experience and
formal deductive approaches ... is important at all levels. ...
The needs of all students are important.”
University lecturer in education

“Three pervasive problems in the teaching and learning of
school geometry are manifest, both in the past and in the
present: the separation of the intuitive mathematisation of
space from formal definitions and inductive reasoning; the
algebraisation of geometry and the suppression of
geometric thinking; and the dominance of perception over
geometric argument. ... Research into the teaching and
learning of Euclidean geometry showed that most students
found it hard ... either to follow or to construct proofs in the
context of geometry [Freudenthal 1973]. ... Freudenthal
suggested that the failure of geometry could be traced to
the way geometry was taught in school: ‘deductivity was
not taught as reinvention, as Socrates did, but was imposed
on the learner’.”
University professor of education

“There is no disagreement among the mathematics
community that proof is a central idea in mathematics and
that it is important that all students should meet proof in
number of guises within their core 5-16 mathematics
curriculum entitlement. Disagreement arises when one
particular faction starts to postulate that proof is so
central to a particular approach that all will know
mathematical proof by being taught a prescribed list of
individual content items.”
Curriculum Group of the Association of Teachers of
Mathematics
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“Most present supported the view that there were clear
benefits to be gained in the teaching of the formal style
of proof incorporated within the more traditional area
of geometry. ... However, the firm opinions were shared
by all that such an area of mathematics had little
relevance to modern students; that it would take up a
disproportionate amount of teaching time for the
negligible benefits accruing to the few students who
might appreciate/enjoy/use such skills at, or beyond,
GCSE level; and that there were other more important
and relevant topics which could (possibly should) be re-
introduced at this level (matrices were mentioned at this
stage).”

“We feel that there is enough geometry in GCSE (some
would throw out the circle theorems) and A-level. No
one wishes to return to the formality of Euclid, which
was accessible only to the few and bored, horrified and
alienated the many.”

“I think it was geometry which persuaded me to
become a mathematician. The revelation that the
simplest possible rectilinear figure - the triangle -
contained such a treasure-trove of unexpected
properties - such as the nine-point circle and Euler line -
and all through the operation of pure thought, ... struck

me, as a thirteen year old, as quite extraordinary.”
Mathematics departments and teachers in independent
schools

“In my work with designers and other illustrators, I find
a basic lack of understanding and the ability to handle
simple two dimensional problems.”
Technical author and illustrator

“Why does mathematics have much more curriculum
time than music? ... Perhaps it is because: Mathematics
is more practically useful than music. Have you
considered seriously the needs of engineers and
physicists, of economists and biologists, of designers
and accountants, as well as of citizens? ... Emphasis on
formal Euclidean Geometry, rather than the more useful
aspects of geometry, is likely to help exacerbate the
social divisions that many, including the Government,
are trying to reduce.”
University professor of mathematics education

“I thought that it was established a long time ago
(1868) that Euclidean geometry (the more formal
approach à la Euclid) was not the best vehicle for
teaching proof, or indeed for teaching geometry!”
Former director of mathematics centre
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1 Introduction

This report has been written in a period of continuing
change within the English education system. Recent
changes affecting mathematics include the 1999
revision of the National Curriculum, the consequent
revision of GCSE syllabuses, the implementation of the
National Numeracy Strategy in primary schools, the
extension of the pilot National Strategy for Mathematics
at Key Stage 3, revisions to the structure of
qualifications in 16-19 education (Curriculum 2000) to
encourage breadth of study, new specifications for A-
and AS-level mathematics and new qualifications in
mathematics such as Free Standing Mathematics Units
and an AS-level in the Use of Mathematics. These
changes are taking place at a time of great difficulty
nationally in the recruitment and retention of teachers,
especially secondary school teachers of mathematics. 

There have been substantial changes in geometry
education in the second half of the twentieth century.
Two features are worthy of note here. First, the needs of
the sciences and engineering have led to a gradually
increasing emphasis on the ‘applicable’ geometrical
content embodied in coordinate geometry and vectors
(and more recently also in transformations and matrices)
at the expense of the ‘purer’ mathematics of classical
‘Euclid’. The position of trigonometry has remained
fairly constant. Second, reform in the structure of 11-19
educational institutions and of the examination system
has placed a requirement on the mathematics
curriculum to be accessible to a wider ability range than
was previously the case. 

2 11-16 curriculum

The National Curriculum applies to pupils in maintained
schools up to the age of 16 and is intended to ensure that
pupils are given access to a broad curriculum. Mathematics
is one of the core subjects and is compulsory at Key Stage 3
(11-14 age group) and Key Stage 4 (14-16 age group).  The
Key Stage 4 mathematics curriculum is now divided into
two programmes of study - foundation and higher. The
higher programme of study is designed for approximately
50% of any age cohort (ie pupils who have attained a
secure level 5 at the end of Key Stage 3). The aims and
objectives underlying the choice of subject matter are not
set out in the Orders; however the handbook on the
National Curriculum indicates the skills and experiences
pupils are expected to gain from following courses of study
based on the National Curriculum. The handbook also
requires teachers to provide differentiated programmes of
study for those pupils whose attainments fall significantly
below or significantly exceed the expected level of
attainment. The National Curriculum sets out what is to be
taught but not how it is to be taught. 

The Qualifications and Curriculum Authority has
published schemes of work for many subjects, such as
science and ICT, at Key Stage 3. A national Key Stage 3
mathematics strategy is to be introduced in September
2001. That strategy has already led to the publication of
a document Framework for teaching mathematics:
Years 7 - 9 which was made available to secondary
schools during the Summer Term 2001. This is intended
to provide practical support and guidance on teaching
mathematics at Key Stage 3. We give some examples of
this in Appendix 7. The framework includes yearly
teaching programmes, and advice on teaching
mathematics lessons and assessing pupils’ progress,
accompanied by detailed sets of objectives. Associated
with the strategy is a programme of professional
development for secondary school mathematics
teachers which will be supported by a team of some
200 Key Stage 3 mathematics consultants.

The National Curriculum for mathematics at Key Stages
3 and 4 is described under three headings: Ma2 Number
and algebra, Ma3 Shape, space and measures and Ma4
Handling data. Together with Using and applying
mathematics, these also form the attainment targets for
assessment purposes. The geometry curriculum is
included in the attainment target Ma3Shape, space and
measures and is divided into four sections:
a) using and applying shape, space and measures

covering problem solving, communicating and
reasoning;

b) geometrical reasoning covering angles, the properties
of rectilinear shapes and circles, and trigonometry,
together with a small amount of 3-D work;

c) transformations, coordinates and vectors; and 
d) measures and construction (which also includes loci).

There are some key changes in the 1999 revision of the
National Curriculum. The topics relating to basic plane
geometry are described in more detail. Pupils are now
specifically required to solve multi-step problems, and to
learn about and create proofs. The degree of
sophistication required depends upon age and prior
attainment.

The core subjects of the National Curriculum, including
mathematics, are assessed at the end of Key Stage 3 by
national tests, and at the end of Key Stage 4 through
GCSEs. These results are published nationally. There are
optional tests available for schools to use at the end of
Year 7 and Year 8. 

3 16-19 curriculum

Following the end of compulsory education at age 16
there is no requirement to continue to study
mathematics. About two thirds of the age cohort of
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c.600 000 choose to stay in full time education. Some of
these students continue their studies in schools, others
in the Further Education sector, which includes Sixth
Form Colleges. As well as the academic A- and AS-level
GCE mathematics courses there is a range of courses
leading to other qualifications. Results for schools and
colleges in A- and AS-level and other examinations are
also published nationally.  

The newly revised AS/A-level core for pure mathematics
contains a small amount of work in coordinate
geometry, vectors and trigonometry. Additionally the
material required to be studied in respect of functions
makes use of skills learnt in geometry at GCSE. Vectors
and aspects of the geometry learnt at GCSE are used
further in optional modules on mechanics. There are
new qualifications called Free Standing Mathematics
Units (FSMUs): each requires 60 hours of study and is
assessed by both coursework and examination. Most
also specify the use of Information and Communication
Technology tools such as graphing calculators, graph
plotting software and spreadsheets. These units are
available at three levels; units at level 3 are called
‘advanced’ and are equivalent to modules of an A- or
AS-level course. There are two units in geometry but
neither is at level 3. A new qualification will be offered
for the first time in September 2001. This is AS-level
‘Use of mathematics’ and comprises two level 3 FSMUs
together with a new synoptic unit. The current draft of
this qualification has a strong emphasis on
mathematical modelling using functions and data,
without any geometrical content. 

4 Setting and differentiation

Almost all secondary schools teach mathematics up to
the end of Key Stage 4 in sets organised by attainment.
Consequently the rate at which pupils progress through
the 11-16 curriculum depends mainly upon prior
attainment and the requirement to provide
differentiated programmes of study for those pupils
whose attainments fall significantly below or
significantly exceed the expected level of attainment.
Such differentiation is reflected in the tiered
examination structure adopted at GCSE, which has
different syllabuses for the foundation, intermediate
and higher tiers. There is no such differentiation in A-
and AS-level mathematics where all candidates are
required to study a common core, which comprises
50% of the content. 

5 Examination results

The proportion of pupils achieving five A*-C grades at
GCSE has risen steadily to 49% of the cohort (from
about 30%) since the introduction of the GCSE in 1988.
Around 46% of GCSE candidates in Year 11 (15-16 year

olds) currently achieve A*-C grades in mathematics.
Currently more than 60 % of those obtaining good (A*-
B) grades in GCSE mathematics choose not continue
with the subject.  

Of the c.400 000 students staying in full time education
after 16, some 225 000 enter for one or more A-levels.
Mathematics is currently the third most popular subject
(behind English and Social Studies). Entries for A-level in
2000 in the 16-18 age group were around 54 000 for
Mathematics and about 5 000 for Further Mathematics,
with a further 11,500 for AS-level. The pattern of entry
changed from September 2000 with the start of
Curriculum 2000 where students are encouraged to
start by studying four, or perhaps five, subjects. Of those
16-18 year olds completing Mathematics and Further
Mathematics A-level in 2000 around 48% achieved a
pass at grade A or B, with nearly 29% achieving grade
A. At AS-level, 18% gained grade A or B and 9% gained
grade A. In 1999 only about 3200 students under the
age of 20 with A-level mathematics applied to read
mathematics at university in England and Wales. The
report ‘Measuring the Mathematics Problem’
(Engineering Council et al, 2000) presents evidence of a
marked decline in university entrants’ mastery of
mathematics skills and their level of preparation for
mathematics based degree courses. It notes that “This
decline is well established and affects students at all
levels” and also that “There is an increasing
inhomogeneity in the mathematical attainments and
knowledge of students entering science and
engineering degree programmes”.

6 The Third International Mathematics and
Science Study (TIMSS)

England has taken part in two recent large scale
international comparisons of mathematics standards
under the title of the Third International Mathematics
and Science Study (TIMSS). The first report of 1996 gave
the results of testing Years 4, 5, 8 and 9 in 1994. The
recent repeat testing for Year 9 only in 1998 was
reported in December 2000. The overall results in
mathematics for Year 9 (mostly 13 year olds) in 1994
showed England as slightly below the international
mean, roughly in the same position occupied in every
large scale comparison starting in the early 1960s
(apparent deviations from this have mainly reflected the
composition of countries taking part). In 1994 the
English results were either slightly lower than or broadly
similar to those of comparable Western European or
English-speaking countries. East Asian countries like
Singapore, Japan and Korea were significantly ahead of
the field, and behind them were several countries in
Eastern Europe. Making comparisons with European
countries is difficult due to different practices regarding
progression from one grade to the next (many countries
require students who fail an end of year test or
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examination to repeat the year) and to the way special
educational needs are addressed. The overall position of
England was very slightly lower in 1998, after taking
into account some differences in the set of countries
taking part. However this apparent continuity disguises
the fact that boys improved on their 1994 performance,
while girls’ scores fell. The difference between the sexes
in 1998 was the third largest out of 38 countries tested,
with only Iran and Tunisia having larger differences.

Uniquely in geometry the English scores deteriorated
between 1994 and 1998. In comparison with the other
countries taking part, Year 9 students scored just below
the average in 1994 and rather more below the average
in 1998. In comparison, scores on all other
mathematical topics in 1998 were above the
international average, and those on Fractions and
Number Sense, Algebra and Measurement rose
between 1994 and 1998. The low performance in
geometry is especially disappointing when set alongside
the high scores achieved in geometry by the same
cohort of pupils tested in 1994 when they were Year 5.
With Hong Kong and Australia, they achieved the
highest scores in geometry.

7 International trends in the geometry
curriculum

Looking across countries, the TIMSS data show
considerable variation in the design and make up of the
mathematics curriculum in general and the geometry
curriculum in particular [Schmidt 1997]. The same
conclusion has been reached by a smaller, but more
detailed, study of the geometry curricula of a sample of
countries [Hoyles et al,2001]. This study found that few
countries have clear mathematical and pedagogical goals
with respect to geometry; most offer what appears to be a
collection of topics. One country that does illustrate clear
goals for geometry is the Netherlands where, in what is
described as ‘vision geometry’, geometry is embedded in
practical activities where even 2-D exercises are viewed
through a 3-D perspective and there is no mention of proof.
Other curricula with a clear focus have a more theoretical
orientation, but among these there is evidence of different
approaches depending on whether congruence or
transformations are used as organising principles and how
far proof is to be ‘discovered’, used or constructed.

Both the study by Hoyles et al and the ICMI study on
geometry [Mammana & Villani, 1998] indicate that
many countries are in the process of changing their
geometry curricula with the majority seeking ways to
integrate technology. How such integration is to be
done is, in most cases, far from clear. Why such
integration is happening is clearer, as the following
example illustrates. One country that has attempted to
teach a theoretical orientated geometry curriculum to
all pupils is Japan [Howson, 2000]. While recent

Japanese research has reported that only about 20% of
students are able to solve geometrical proof problems
as a result of being taught such a curriculum, a detailed
study of students using dynamic geometry software
found three major effects: through using such software
the students could visualise the geometrical character of
a figure more clearly, they had a better understanding of
the meaning of the theorem, and were clearer about
what they should be proving [Nomura, 1999]. 

In France, at the time of writing, a major review of the
teaching and learning of school mathematics is drawing
to a conclusion. In terms of geometry, this review
confirms geometry as a vital part of the school
mathematics curriculum [Commission de Refléxion sur
l’Enseignement des Mathématiques, 2000]. For
students aged 11-19 the French report on geometry has
five recommendations. These are that geometry for
such students should:
a) focus on the understanding of space (by including,

for example, the study of polyhedra and of spherical
geometry);

b) reinforce the notion of invariance (of length, angle,
surface);

c) stress problems concerning geometrical situations
and constructions;

d) re-emphasise cases of isometry of triangles; and
e) introduce a rich variety of geometry to students (to

include, for example, inversive geometry).

The French report emphasises that the expertise of
teachers is crucial to the successful teaching of such a
curriculum and recommends the reinforcement of
geometry within university curricula for prospective
mathematics teachers.
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1 National Strategies

The government has introduced a number of measures
aimed at raising achievement. In primary schools these
have been based upon the National Literacy and
Numeracy Strategies which are led by the Standards and
Effectiveness Unit of the Department for Education and
Skills (DfES). These strategies are now supported
through framework documents and other materials
used extensively in primary schools. It is Key Stage 3 of
the National Curriculum in secondary and middle
schools which is now the subject of attention. A
transforming Key Stage 3 strategy has now been
launched. (See e.g. http://www.standards.dfee.gov.uk)
There are five main strands in the strategy. Two of these
- English and mathematics - are to be implemented
nationally from September 2001 following a 1-year
pilot phase. Meanwhile science and ICT are being
piloted before being adopted nationally in September
2002. The fifth strand, entitled ‘Teaching and Learning
in the Foundation Subjects’ will also be implemented
nationally in 2002.

2 Funding for initiatives

In addition to the usual funding arrangements, all
maintained schools and LEAs can apply for further
funding in support of national initiatives through the
DfES’s Standards Fund. For example this makes
provision for schools to improve their hardware,
software, resources and training in connection with the
government’s educational ICT strategy - known as the
National Grid for Learning (NGfL). Additional funds are
also made available to a variety of schools and colleges
through a number of initiatives. These include the
specialist and beacon schools, some of which are
affiliated to the Technology Colleges Trust, those in the
Education Action Zones and those contributing to the
‘Excellence in Cities’ initiative. 

3 The teaching profession

The government has announced its intention to
modernise working practices in both education and
health. One aspect of this is to increase the
professionalism of teachers. As from 2001 all teachers
in the maintained sector are required to register with
the General Teaching Council. This, together with the
National College for School Leadership, will take over
the major responsibilities for policy and coordination of
teachers’ continuing professional development (CPD)
from the Teacher Training Agency. The government has
already introduced a new career grade for teachers
called the ‘Advanced Skills Teacher’. Such teachers

normally have a responsibility, known as ‘outreach’, to
carry out development work in other schools. A new
pay structure has been introduced with the intention of
encouraging good teachers to stay in the classroom
rather than seek preferment through management and
added administration.

Until the National Numeracy Strategy there had been a
period of about eight years in which little subject based
professional development took place. The government
launched its new strategy for teachers’ CPD in March
2001 which has a number of strands, such as bursaries,
secondments, learning accounts etc. Within this there is
a strong emphasis on increasing teachers’ subject
knowledge, and associated pedagogy. The new Key
Stage 3 mathematics strategy will now become a major
channel of funds for CPD into mathematics education,
through the employment of local consultants and the
involvement of a selected group of leading mathematics
teachers.

With the upturn in the economy some seven years ago,
courses of initial teacher education have struggled to
recruit candidates for shortage subjects such as
secondary school mathematics. Until recently teaching
was one of the professions within which trainees did
not receive some form of pay while working towards
qualifications. The government redressed this last year
and now pays graduate trainees a small annual sum,
with additional sums for shortage subjects such as
mathematics. The government is also considering
paying off the student loans of some teachers -
including mathematics teachers - who enter and stay
within the maintained sector for a specified number of
years.

The government has introduced a set of standards and a
National Curriculum for initial teacher training (ITT)
which trainees must satisfy in order to be recommended
for Qualified Teacher Status (QTS). The ITT National
Curriculum for secondary level mathematics specifies
the essential core of knowledge, understanding and
skills which all trainees must be taught and be able to
use in their teaching. While regrettably containing little
reference to geometry, it does include the ability to use
ICT effectively in the teaching and learning of the
subject. 

This ICT specification for trainees has also been
embraced as the goal for the subject specific ICT
training for teachers in post, organised through the
New Opportunities Fund. Here £230m is being spent
over four years to improve the skills of around 400 000
teachers and school librarians in the educational use of
ICT. Much of this training is taking place in the teachers’
own time. To assist in the identification of training
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needs, the TTA provided schools in 1999 with a set of
CD-ROMs containing information and case studies
about the use of ICT in subject teaching for needs
identification purposes. One of the four secondary
mathematics case studies includes a classroom video of
a teacher using dynamic geometry software to teach a
Year 7 class about parallel lines.

4 ICT and the curriculum

In the 1999 revision of the National Curriculum the
descriptions of many subjects were updated in a way

which considerably strengthened their references to the
educational uses of ICT, but this was not done effectively
in the case of mathematics. The new framework
document for Key Stage 3 mathematics demonstrates a
much more positive view of the potential of ICT to
enhance teaching and learning if used critically.
Associated with this is a government project to use ICT to
enhance teaching and learning of mathematics in Year 7.
The DfES has also extended its Computers for Teachers
initiative into a second phase aimed specifically at those
teaching Key Stage 3 mathematics. This enables
qualifying teachers to reclaim up to £500 towards the
cost of buying a computer.
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1 Geometry for pupils following the
foundation programme of study at Key Stage 4

The view of the working group is that the revised
National Curriculum forms the basis for creating a
rewarding geometry curriculum for these pupils. These
pupils are unlikely to study mathematics at a level
beyond GCSE. Thus their studies of mathematics during
Key Stages 3 and 4 need to provide the foundations for
the mathematics which are they are likely to need in
pursuing other studies, work and everyday life. It is
primarily the role of the teacher to provide a rewarding
geometry curriculum in the classroom. The approach to
geometry needs to be attainable, demanding, and
interesting. For most of these pupils it is necessary to
connect work in the mathematics classroom to the
world outside in ways that seek to engage their interest.
Three principle objectives in teaching geometry to this
group are: 

a) to build up knowledge and understanding of
geometry and geometrical properties – using the
properties of plane figures and solids to deduce more
facts and to reason geometrically; 

b) to use geometry practically and to solve practical
problems both inside and outside mathematics, and 

c) to develop an understanding of how geometry
describes objects and how it can be used to create
them. 

Examples of how this might be done are discussed
briefly in the next two paragraphs. 

The geometry curriculum can be used to provide natural
opportunities for justification and deduction at a level
basic enough for the great majority of students. Using
results such as those involving angles and parallel lines
to solve problems can give a sound introduction to
justification and logical argument. Some pupils will find
it easier to explain their reasoning in those problems
where they have physical objects and diagrams to
manipulate. Numerical or algebraic problems often
need greater levels of articulation and communication
skills which can hinder many pupils’ explanation of the
underlying mathematics. 

The geometry curriculum should contribute significantly
to the development of pupils’ spatial reasoning and
their ability to visualise, which should help them to
understand the world around them. It should contribute
to developing a variety of skills for use in their everyday
life. For many pupils there will also be pleasure to be had
in the design aspects of the subject.

2 Geometry for pupils following the higher
tier syllabus at GCSE

Those pupils who follow the higher tier syllabus at GCSE
will include a wide range of attainment, potential and
mathematical ambition, yet in many schools they will be
taught in the same group. Not all will proceed with their
study of mathematics after 16; certainly some with
mathematical talent will not proceed to AS-level
mathematics. It is important therefore that the geometry
that these students study in the 11-16 period both forms a
foundation for AS- and A-level work and forms a
satisfactory basis for the study of other subjects at AS- and
A-level, and at degree level (as far as is possible for subjects
that do not require a pass in AS- or A-level mathematics),
yet also forms a satisfying study in its own right. It is
important that the curriculum tempts as many as possible
of this group into entering for AS-level mathematics.

There has been concern, which we share, that many of
the more able pupils have been insufficiently stimulated
by the geometry they have met. The new National
Curriculum has established two different programmes of
study at Key Stage 4; namely foundation and higher. The
higher programme, the one relevant to the more able
pupils, includes extra geometrical content, much in basic
plane geometry, and puts more emphasis on reasoning
and proof.  In addition we would wish there to be more
emphasis on tackling problems which require unsignalled
steps, on deeper investigations either within geometry or
in its applications, and on practising and choosing the
routine procedures involved in such work. These extra
emphases need to be handled carefully, however, if
geometry is to engage, intrigue and sustain pupils so that
more will seek to continue their study of mathematics.

3 Geometry and Higher Education in
mathematics

The reports ‘Measuring the Mathematics Problem’ and
‘Engaging Mathematics’ highlight several problems
which are interconnected. Despite the substantial
increase of students in Higher Education over the last 15
years, the absolute number of students studying
mathematics has remained relatively steady, but with
more students choosing the mathematics of finance
and related studies. There is a shortage of suitably
qualified applicants for teacher training. There has also
been a decline in the entry standards for
undergraduates in mathematics. Applicants for degrees
are perceived as knowing less mathematics and as being
less proficient than 15 years ago. The content covered
and the skills level required to obtain a high grade at A
level have reduced over that period. 
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Within the mathematics community in Higher
Education there is (and there has been for several years)
a desire to see the perceived decline reversed. In
particular, there is strong support to increase the
knowledge and skills of pupils by: 
a) demanding sounder mathematical knowledge,

particularly in algebra;
b) improving technical proficiency;
c) developing knowledge and understanding of proof;
d) improving the ability to solve multi-step problems;

and 
e) improving the ability to write out coherent

mathematical arguments and explanations.

Many of the submissions to this group, from both HE
mathematicians and some teachers, stressed the
importance of geometry, especially Euclidean geometry,
as a vehicle for teaching an appreciation of proof and as
leading naturally towards higher levels of mathematics.
(Indeed several of these writers described this area as
the most inspirational part of their own school
mathematics education.) We note that the new
National Curriculum has added some emphasis in this
area; and we recognise that, although proof is indeed a
key element in geometry, it is essential that its teaching
be handled sensitively.

4 Perspectives from others in Higher Education 

With the expansion of higher education, many science,
engineering and information systems departments,
together with other departments such as business
studies and economics, no longer require
undergraduates to have A-level mathematics and some
require no more than a C grade at GCSE. Consequently,
many undergraduates are not properly equipped to deal
with the mathematical content of their courses at a time
when there is a greater need for mathematical
knowledge and skills. Furthermore the demands of
many arts and social science degrees require good
mathematical knowledge and skills, not only in
statistics. Mathematical modelling in the biological and
social sciences is also rapidly increasing, and will
continue to do so throughout the 21st century, in both
quantity and sophistication. Geometry permeates
almost all these mathematical models.

Geometry is intimately related to appreciation in art, in
architecture, and in all physical crafts. At an appropriate
level school geometry, more than either of the other two
main branches of school mathematics (algebra and
number), shows how we think logically about the space
in which we live i.e. the space around the surface of a
solid planet. The concept of a shadow illustrates this; for
example the shadow cast by a tennis ball on the surface
of a floodlit court is an ellipse. Further, the distinctions
between 2-dimensional and 3-dimensional space engage
the imagination with the concept of higher dimensions. 

Much of physics, structural engineering, geology,
geography, and chemistry deal with solid shapes. Many
of the explanations of phenomena in physical and
biological sciences as well as in engineering involve
geometry as a paramount part. Many explanations
depend mainly on geometry linked with another
concept, for example in drug design the size and shape
of molecules, or in buckling the concept of slenderness.
In others, geometry dominates, eg in crystallography, in
the notions of strain, shear and isomerism.

Geometry underpins much of information technology.
The World Wide Web relies heavily on computer
graphics, as do all manner of user interfaces. It might
be argued that it is advances in graphical user
interfaces that have enabled relatively untrained users
to produce complex and sophisticated results without
necessarily understanding how applications (such as
desktop publishing) work just as few really understand
what goes on under the bonnet of a car. The mass
utilisation of personal computers would not have been
possible without these advances. Computer aided
geometrical design has largely supplanted
conventional engineering drafting, particularly where
more complex shapes are required. It is widely used in
manufacturing, entertainment (animation, virtual
reality, computer games), publishing, graphic design
and the web. 

Personal computers now embody in hardware
sophisticated 3-D graphics, rendering systems
previously restricted to high-end computers or
elaborate software obsolete, and there is no question
that three-dimensional graphics will become
commonplace. The 3-D rules of perspective are used to
rotate an object on screen, so as to be able to see it
from all sides, and to move it through an architectural
landscape, so as to view it from all angles, both outside
and inside. 

There are downsides, particularly the lack of
understanding of the mathematical principles that
underlie the packages, failure to understand the
limitation of the packages and how to extend systems.
Computer graphics is a subject popular with students
in higher education but few are equipped, even with A-
level mathematics, to cope with the underlying
principles without which systems cannot be developed.
Computationally, 3-D geometry is considerably more
difficult to implement than 2-D geometry, although
mathematically it should be within the grasp of these
students. A broad geometrical education including
spatial reasoning, an understanding of the basic
geometrical properties of various objects, parametric
representation of curves and surfaces, transformations,
and construction, as well as facility with algebraic
manipulation, would provide some of the foundations
upon which understanding could be built.

The Royal Society38 | July 2001 | Teaching and learning geometry 11-19



5 Employers’ perspectives 

Employers, both public and private, have concerns
about the mathematics skills of many of their
employees. The sophistication of the mathematics used
throughout the public and private sectors - for example,
in healthcare, in education, and on trading floors in
banks - has increased substantially over the last 25
years. Generally the workforce needs better
mathematical skills if public accountability is to be
properly discharged and skill shortages are to be dealt
with (including insufficient appropriately qualified IT

specialists and teachers). The Confederation of British
Industry and many of its members are concerned that
the education of many school leavers and new
graduates needs to be of a higher standard if the UK
economy is to compete effectively in world markets.
There are two areas of concern which are particularly
relevant to this report:
a) the low mathematical and literacy skills of many

school leavers; and
b) the shortfall in mathematics, science, engineering

and technology graduates.
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In this Appendix we describe briefly the nature of
geometry, as it was developed by early civilisations, the
classical Greek and later cultures, as it impinges on
modern everyday life, technology and science, and its
current status within mathematics as a whole.

1 Early Geometry 

Geometry emerged as an essentially practical activity,
but soon became applied in the social, religious and
economic development of early civilisations. There are
many examples of the measurement of heights and
distances used in elementary astronomy and the
building of temples and palaces in Indian,
Mesopotamian, Egyptian, Central American, and other
cultures. The elementary properties of the circle, the
square and the ‘Pythagoras’ relation were well known
from ancient times. This practical knowledge spread
across the Mediterranean, was adapted by the
emerging Greek culture and began to develop as an
intellectual activity from around 600BC. The whole
‘Greek’ period stretches from Thales (c 640 BC) to
Diophantos (c 250 AD). However, from about the time
of Archimedes (d 212 BC) the principal focus of
development moves to North Africa. By the end of this
period geometry had been applied in both theoretical
and practical astronomy (including trigonometry),
mechanics, optics, music, geography, and astrology. The
intellectual culture of the time attempted to understand
nature by rational argument, and the style of the
‘Elements’ of Euclid thereafter became the model for
virtually the whole of mathematical discourse up to the
twentieth century.

2 Geometry as an element in the history of
culture 

Geometry in its different forms has been an important
part of many cultures. The motions of the stars and
planets have regulated our lives from ancient times, and
man’s relation with the heavens is expressed through
the orientation and proportion of temples and other
structures dating back many centuries. The so-called
classical problem of doubling the cube originated in a
Hindu religious practice which is still carried out today.
The proportions of the human body were used to design
Hindu temples, and also appear in the work of the
modern architect Le Corbusier, while the well-known
‘Golden Ratio’ can be found in many examples of
buildings from classical times to today. The visual impact
of geometric symmetry was used to great effect in
Islamic design, Celtic ornamentation, and in Japanese
‘Wasan’ geometry. Different kinds of symmetry are still a
powerful feature in the design of many modern

artefacts. The concept of geometric proportion gave
rise to the idea of the musical ratios first documented by
the Pythagoreans, and many examples of the
exploration of these and other ratios can be found in
the music of many cultures. A large part of classical
Greek mathematics was preserved and further
developed by Arab scholars and transmitted by them,
together with Jewish and Christian scholars, to Western
Europe. Thereafter, the cultural dominance of Western
Europe led to the establishment of Euclidean methods
as the model not only for mathematics, but also for
many other forms of reasoning.

In the early Renaissance artists like Giotto began to
move away from purely symbolic representation and to
develop practical techniques of more ‘realistic’ forms of
representation. The paintings still had to conform to a
number of cultural conventions, and so perspective was
only one element (but a quite significant one for
mathematics) of the development of Renaissance
painting and architecture. Brunelleschi’s text on
proportion and perspective became the source of ideas
which culminated in the projective geometry of
Desargues. The spherical trigonometry from Arab
astronomy was applied to finding the direction of
Mecca, and the making of maps by different projections
of the sphere onto a plane. Anamorphic projection was
also developed and these techniques were employed in
the science of cartography. Furthermore, economic
expansion demanded more sophisticated techniques
for navigation, thus motivating further development of
trigonometry and the invention of logarithms. 

For a long time, man has been fascinated with aspects
of the infinite. Evidence of this can be found in self-
replicating patterns, spirals and other designs based on
tessellations, dilations and dissections. While the
primary purpose of many of these designs was social
and symbolic, they did require some fundamental
knowledge of spatial properties. More recently
projective and other transformations, together with
visual representations of ‘non-Euclidean’ geometry,
have inspired the work of contemporary artists such as
Mondrian, Dali, Escher and Bridget Riley. Movements
like cubism and structuralism which include the work of
Picasso, Braque and Kandinsky, for example, have also
in part been inspired by mathematical idea.

It is interesting to observe a relationship between
geometry and the philosophy of different cultures,
particularly through their models of the universe. The
heliocentric theory originating with the Greeks and
elaborated by Ptolemy became the dominant world
view and was adapted by Christian philosophers as the
model for man at the centre of the universe. The
Platonic solids through their shapes and ratios were
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considered to have special mystical properties and
appear in many representations of astronomical
theories. These were used by Kepler to calculate the
distances between the planets. Hermetic philosophy
developed similar ideas in the “music of the spheres”,
and this was a strong theme in some of Newton’s ‘non-
mathematical’ writings. Galileo’s adaptation of
Copernicus’ heliocentric theory was based on what he
considered to be strong scientific evidence. However,
this motivated serious discussions about the nature of
scientific versus religious ‘truth’. The seventeenth
century saw enormous changes in philosophical
climate, principally due to the gradual adaptation of the
new cosmology, which relied heavily on geometry for its
logical support, and the synthesis of algebra and
geometry achieved by Descartes and Fermat provided a
powerful tool for the analytical justification of Newton’s
theory. The ‘Principia’ was presented in geometrical
form in order to reach a wider audience, which enabled
philosophers like Voltaire, Hobbes and Locke to
understand and support its arguments. Cartesian
rationalism, supported by the new developments in
mathematics, provided a climate for Lagrange’s great
‘System of the World’ and the belief in a mechanistic
universe. The general view at this time was that the
principles of geometry, confirmed by experience, would
continue to be so because God had made it that way.
Thus geometry was the most perfect and certain of the
sciences. There are many examples where Greek, Arab
and later mathematicians questioned the independence
of Euclid’s fifth postulate, and by the end of the
eighteenth century mathematicians like Saccheri,
Lambert and others paved the way for the invention of
non-Euclidean geometries by Gauss, Lobachevsky and
Bolyai. This had two principal effects: the realisation of
the independence of geometry, and hence
mathematics, from the physical world, and it again
raised questions about the nature of truth. During the
nineteenth century new geometries were developed by
Riemann, Moebius and others, but since understanding
these now required considerable technical knowledge,
the effect on philosophy at that time was marginal. It
was the use of non-Euclidean geometry by Einstein to
develop relativistic models of the universe and curved
space-time, together with the development of visual
representations that brought geometry again to the
notice of philosophers, and Relativism became an
important component of Twentieth Century philosophy.
Our modern society is apparently less confident of its
power to predict and control the future of the world,
and this may be partly a product of the recognition of
chaotic phenomena in the mathematics used to
describe it.

3 Geometry in the everyday world

Geometry is relevant both inside and outside
employment. Workers in many sectors of employment

need spatial reasoning together with geometrical
understanding to a greater or lesser extent. These
include workers in the construction industry, such as
scaffolders, bricklayers and joiners, as well as
decorators, interior designers, landscape gardeners,
planners and architects. Within the manufacturing
industry, assembly workers, mechanics, engineers and
industrial designers also need such skills. 

In everyday life, a wide range of activities is linked to
some extent with geometry. Many familiar tasks require
spatial reasoning. These include laying carpet in a room,
packing cases in a car boot, playing sport or choosing a
quick route, whether walking from home to school,
driving from Glasgow to Inverness, or sailing across the
Atlantic. Likewise many ‘Do it Yourself’ construction
projects around the home and garden involve simple
geometrical considerations. Many children, and some
adults, play 3-D computer games which, almost by
definition, require spatial reasoning and an ability to
visualise to play them successfully.

4 Geometry in technology 

Each of the artefacts of our technological society
possesses a shape which is important to its correct
functioning, and which must be designed by engineers
or architects. The wheel, embodying rotational
symmetry, is perhaps the most ancient example. Static
frameworks such as the Eiffel Tower, Sydney Harbour
Bridge and Buckminster Fuller’s geodesic domes are
geometry writ large, as are structures based on curved
surfaces such as the Members’ Stand at the Lords
cricket ground, the Sydney Opera House and the
Millennium Dome. Geometrical principles underlie the
working of all mechanisms and machines, from old
steam locomotives to modern robots, through levers,
linkages and gears to the Wankel engine. Geometry
underpins the successful aerodynamic design of
economical cars, trophy winning racing yachts and
wingless space shuttles. Computer software has been
designed to implement geometrical principles in
tackling tasks as diverse as 3-dimensional design, virtual
reality and remote controlled robotic surgery. Medicine
is also reliant on the 3-D awareness of its surgeons in
performing complex operations, and of its radiologists
in shaping intersecting beams of radiation to destroy
tumours.

5 Geometry in the sciences 

The ‘purer’ sciences are also pervaded by geometrical
aspects. From the molecular to the tectonic level, shape,
together with physical and chemical properties, governs
the natural world. The Human Genome Project has
sequenced our DNA, but finding the 3-D configuration
of the proteins it specifies is much more difficult, yet
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essential for the rational design of advanced drugs. The
design of advanced materials such as high temperature
superconductors, strong light composites, efficient
catalysts or fast semiconductors involves a geometrical
understanding of their atomic structure. Computer
based imaging of 3-D information resulting from a
medical scan, a seismic survey, or a mathematical model
of stresses, heat or fluid flow, is vital to interpretation. It
is also an important aid to the interpretation of multi-
dimensional statistical data. Geometry rules the deepest
levels of theoretical physics: on the largest scale
Einstein’s General Theory of Relativity is essentially a
geometrical description of space-time, while on the
smallest scale, the subtle symmetries and extra
dimensions of field theories are vital to elementary
particle physics. 

6 Geometry in modern mathematics

The place of geometry in mathematics, like
mathematics itself, has evolved substantially, and
continues to do so. Developments in astronomy led to
the invention of trigonometry and spherical geometry,
which in their turn required better techniques for
computation. The analytic and projective geometry of
the seventeenth century brought new techniques into
mathematics, and the geometrical principles involved
are still fundamental to calculus and its applications
today. By the early twentieth century the invention of
vectors and matrices had provided new tools whereby
algebraic and vector geometries could be developed.

In the nineteenth and early twentieth century projective
geometry was commonly the cornerstone of many
university courses, and well into the nineteenth century
the term ‘Geometrician’ was still used in continental
Europe to describe an expert mathematician. However,
new problems and new interests arise, and the study of
non-Euclidean geometries, although seemingly very
abstract, have since been introduced which are central
to modern views of the geometry of space-time. Both
algebraic geometry and the analytic study of curves and
surfaces, differential geometry, have undergone
substantial development throughout the twentieth
century. 

At the other end of the spectrum from Euclidean
geometry is the study of topology or ‘rubber sheet
geometry’, which arises both from Poincaré’s work on
dynamical systems, and Frechet’s desire to unify
Cantor’s theory of point sets and the treatment of

functions as points of a space. Other modern
mathematical topics which link geometry with dynamics
and analysis include chaos theory, catastrophe theory
and fractal geometry.

7 Geometry in future mathematical research

Geometry lies at the heart of future research in the
whole of mathematics, both pure and applied. In
particular the following geometrical subjects are
currently flourishing in research: algebraic geometry,
differential geometry, symplectic geometry,
computational geometry, topology, algebraic topology,
manifold theory, singularity theory and graph theory.
Geometry is also fundamental to the future of other
mainstream branches of pure mathematics such as
group theory, Lie groups, representation theory,
commutative rings, algebraic number theory, qualitative
differential equations, dynamical systems, chaos and
global analysis.

Geometry is fundamental to theoretical physics in
relativity, quantum mechanics, field theory,
electromagnetism and gravity, and also figures largely in
many other areas in which mathematics is applied, such
as fluid mechanics, geophysics, defectology, robotics,
computer imaging, computer vision, computer aided
design, molecular analysis, medical imaging, neural
networks, theoretical biology, and modelling in the
social sciences.

The importance of geometry in modern mathematics
can be seen in the 6 month long research programmes
run by the Newton Institute in Cambridge since its
foundation in 1992: of these 50% have involved
geometry either as the main component or as a major
component in both pure and applied programmes.
Another example is the policy of the National Science
Foundation in the USA: during the last decade, amongst
grants in mathematics, priority has been given to those
containing a major component of geometry. 

Two UK geometers have been awarded the Fields Medal
(the highest international award in mathematics,
equivalent to a Nobel Prize): Sir Michael Atiyah and
Professor Simon Donaldson.  At present the UK is one of
the leading countries in the world in mathematical
research, but if we are to retain this enviable position it
is essential to train future generations at school in the
foundation of mainstream mathematics, of which
geometry has always been, and still is, a major part. 
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The 1999 revision of ‘Mathematics: The National
Curriculum for England’ can be downloaded from
http://www.nc.uk.net/ Set out below is a summary of
the geometry content of the Key Stage 3 and Key Stage
4 mathematics curriculum. Topics in the higher
programme of study are given in italics.

1 Geometrical reasoning

Pupils should be taught to:

Angles
a) recall and use properties of angles at a point, angles

on a straight line (including right angles),
perpendicular lines, and opposite angles at a vertex;

b) distinguish between acute, obtuse, reflex and right
angles; estimate the size of an angle in degrees;

Properties of triangles and other rectilinear shapes
c) distinguish between lines and line segments; use

parallel lines, alternate angles and corresponding
angles; understand the properties of parallelograms
and a proof that the angle sum of a triangle is 180
degrees; understand a proof that the exterior angle
of a triangle is equal to the sum of the interior angles
at the other two vertices;

d) use angle properties of equilateral, isosceles and
right-angled triangles; understand congruence,
recognising when two triangles are congruent;
explain why the angle sum of any quadrilateral is 360
degrees;

e) use their knowledge of rectangles, parallelograms
and triangles to deduce formulae for the area of a
parallelogram, and a triangle, from the formula for
the area of a rectangle;

f) recall the essential properties of special types of
quadrilateral, including square, rectangle,
parallelogram, trapezium and rhombus; classify
quadrilaterals by their geometric properties;

g) calculate and use the sums of the interior and
exterior angles of quadrilaterals, pentagons and
hexagons; calculate and use the angles of regular
polygons;

h) understand and use SSS, SAS, ASA and RHS
conditions to prove the congruence of triangles
using formal arguments, and to verify standard ruler
and compass constructions;

i) understand, recall and use Pythagoras’s theorem in
2-D, then 3-D problems; investigate the geometry of
cuboids including cubes, and shapes made from
cuboids, including the use of Pythagoras’s theorem
to calculate lengths in three dimensions;

j) understand similarity of triangles and of other plane
figures, and use this to make geometric inferences;

understand, recall and use trigonometrical
relationships in right-angled triangles, and use these
to solve problems, including those involving
bearings, then use these relationships in 3-D
contexts, including finding the angles between a line
and a plane (but not the angle between two planes
or between two skew lines); calculate the area of a
triangle using  1–2 absinC; draw, sketch and describe
the graphs of trigonometric functions for angles of
any size, including transformations involving scalings
in either or both the x and y directions; use the sine
and cosine rules to solve 2-D and 3-D problems.

Properties of circles
k) recall the definition of a circle and the meaning of

related terms, including centre, radius, chord,
diameter, circumference, tangent, arc, sector and
segment; understand that the tangent at any point
on a circle is perpendicular to the radius at that
point; understand and use the fact that tangents
from an external point are equal in length; explain
why the perpendicular from the centre to a chord
bisects the chord; understand that inscribed regular
polygons can be constructed by equal division of a
circle; prove and use the facts that the angle
subtended by an arc at the centre of a circle is twice
the angle subtended at any point on the
circumference, the angle subtended at the
circumference by a semicircle is a right angle, that
angles in the same segment are equal, and that
opposite angles of a cyclic quadrilateral sum to 180
degrees; prove and use the alternate segment
theorem

3-D shapes
l) explore the geometry of cuboids (including cubes),

and shapes made from cuboids
m)use 2-D representations of 3-D shapes and analyse 3-

D shapes through 2-D projections and cross-sections,
including plan and elevation; solve problems
involving surface areas and volumes of prisms,
pyramids, cylinders, cones and spheres; solve
problems involving more complex shapes and solids,
including segments of circles and frustums of cones.

2 Transformations and coordinates

Pupils should be taught to:

Specifying transformations
a) understand that rotations are specified by a centre

and an (anticlockwise) angle; use any point as the
centre of rotation; use right angles, fractions of a
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turn or degrees to measure the angle of rotation;
understand that reflections are specified by a mirror
line, translations by a distance and direction (or a
vector), and enlargements by a centre and positive
scale factor;

Properties of transformations
b) recognise and visualise rotations, reflections and

translations, including reflection symmetry of 2-D
and 3-D shapes, and rotation symmetry of 2-D
shapes; transform 2-D shapes by translation, rotation
and reflection, and combinations of these
transformations; use congruence to show that
translations, rotations and reflections preserve
length and angle, so that any figure is congruent to
its image under any of these transformations;
distinguish properties that are preserved under
particular transformations recognising that these
transformations preserve length and angle, so that
any figure is congruent to its image under any of
these transformations;

c) recognise, visualise and construct enlargements of
objects using positive integer scale factors greater
than one, then positive scale factors less than one;
understand from this that any two circles and any
two squares are mathematically similar, while, in
general, two rectangles are not, then use positive
fractional and negative scale factors;

d) recognise that enlargements preserve angle but not
length; identify the scale factor of an enlargement as
the ratio of the lengths of any two corresponding line
segments and apply this to triangles; understand the
implications of enlargement for perimeter; use and
interpret maps and scale drawings; understand the
implications of enlargement for area and for volume;
distinguish between (understand) formulae for
perimeter, area and volume by considering
dimensions; understand and use simple examples of
the relationship between enlargement and areas and
volumes of shapes and solids; understand and use
the effect of enlargement on areas and volumes of
shapes and solids;

Coordinates
e) understand that one coordinate identifies a point

on a number line, two coordinates identify a point
in a plane and three coordinates identify a point in
space, using the terms ‘1-D’, ‘2-D’ and ‘3-D’; use
axes and coordinates to specify points in all four
quadrants; locate points with given coordinates;
find the coordinates of points identified by
geometrical information [for example, find the
coordinates of the fourth vertex of a parallelogram
with vertices at (2, 1) (-7, 3) and (5, 6)]; find the
coordinates of the midpoint of the line segment
AB, given points A and B, then calculate the length
AB

Vectors
f) understand and use vector notation; calculate, and

represent graphically the sum of two vectors, the
difference of two vectors and a scalar multiple of a
vector; calculate the resultant of two vectors;
understand and use the commutative and associative
properties of vector addition; solve simple
geometrical problems in 2-D using vector methods.

3 Measures and construction

Pupils should be taught to:

Measures
a) interpret scales on a range of measuring instruments,

including those for time and mass; know that
measurements using real numbers depend on the
choice of unit; recognise that measurements given to
the nearest whole unit may be inaccurate by up to
one half in either direction; convert measurements
from one unit to another; know rough metric
equivalents of pounds, feet, miles, pints and gallons;
make sensible estimates of a range of measures in
everyday settings;

b) understand/use angle measure, using the associated
language [for example, use bearings to specify
direction];

c) understand and use compound measures, including
speed and density;

Construction
d) measure and draw lines to the nearest millimetre,

and angles to the nearest degree; draw triangles and
other 2-D shapes using a ruler and protractor, given
information about their side lengths and angles;
understand, from their experience of constructing
them, that triangles satisfying SSS, SAS, ASA and
RHS are unique, but SSA triangles are not; construct
cubes, regular tetrahedra, square-based pyramids
and other 3-D shapes from given information;

e) use straight edge and compasses to do standard
constructions, including an equilateral triangle with a
given side, the midpoint and perpendicular bisector
of a line segment, the perpendicular from a point to a
line, the perpendicular from a point on a line, and the
bisector of an angle;

Mensuration
f) find areas of rectangles, recalling the formula,

understanding the connection to counting squares
and how it extends this approach; recall and use the
formulae for the area of a parallelogram and a
triangle; find the surface area of simple shapes using
the area formulae for triangles and rectangles;
calculate perimeters and areas of shapes made from
triangles and rectangles;

g) find volumes of cuboids, recalling the formula and
understanding the connection to counting cubes and
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how it extends this approach; calculate volumes of
right prisms and of shapes made from cubes and
cuboids;

h) find circumferences of circles and areas enclosed by
circles, recalling relevant formulae, calculate the
lengths of arcs and the areas of sectors of circles;

i) convert between area measures, including square
centimetres and square metres, and volume

measures, including cubic centimetres and cubic
metres;

Loci
j) find loci, both by reasoning and by using ICT to

produce shapes and paths [for example, equilateral
triangles] [for example, a region bounded by a circle
and an intersecting line].
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The following are extracts from the Key Stage strategy
document ‘Framework for teaching mathematics: Years
7-9’ which can be downloaded from the Standards
website at: http://www.standards.dfee.gov.uk/
keystage3/strands/mathematics/ 

1 Shape, space and measures

Geometry in Key Stage 3 is the study of points, lines and
planes and the shapes that they can make, together
with a study of plane transformations. A key aspect is
the use and development of deductive reasoning in
geometric contexts. Geometrical activities can be linked
to accurate drawing, construction and loci, and work on
measures and mensuration. By ensuring that pupils
have a range of suitable experiences you can develop
their knowledge and understanding of shape and space
and their appreciation of the ways that properties of
shapes enrich our culture and environment. 

2 Geometrical reasoning

Pupils can be aware of and use geometrical facts or
properties that they have discovered intuitively from
practical work before they can prove them analytically.
The aim in Key Stage 3 is for pupils to use and develop
their knowledge of shapes and space to support
geometrical reasoning. For example, they need to
appreciate that tearing the corners off a triangle and
placing them side by side at best indicates that the angle
sum of a triangle is approximately 180º, and that
however many particular cases they can find of triangles
with an angle sum of 180º, this does not prove the
general case. In Key Stage 3, you can build on pupils’
experience and the practical demonstrations and
explanations that have sufficed in Key Stages 1 and 2.
Teach them to understand and use short chains of
deductive reasoning and results about alternate and
corresponding angles to reach a proof. Later, pupils
should be able to explain why the angle sum of any
quadrilateral is 360º, and to deduce formulae for the
area of a parallelogram and of a triangle from the
formula for the area of a rectangle. These chains of
reasoning are essential steps towards the proofs that are
introduced in Key Stage 4.

3 Appreciation of shape and space

Geometry cannot be learned successfully solely as a
series of logical results. Pupils also need opportunities to
use instruments accurately, draw shapes and appreciate
how they can link together, for example, in tessellations.
In Key Stage 3, it is vital to distinguish between the

imprecision of constructions which involve protractors
and rulers, and the ‘exactness in principle’ of standard
constructions which use only compasses and a straight
edge. Geometrical reasoning can show pupils why
construction methods work, for example, the method
to construct a perpendicular bisector of a line segment.

Practical work with transformations will produce
interesting problems to solve as well as helping pupils to
understand the topic more fully. Urge them to visualise
solutions to problems such as: ‘When a triangle is
rotated through 180 degrees about the mid-point of
one side, what shape do the original and final triangles
form?’ Linking geometry to subjects such as art,
through symmetry or tessellations, or religious
education, perhaps through a study of the properties of
Islamic patterns or cathedral rose windows, offers good
opportunities to develop creativity. By encouraging
pupils to speculate why the properties they have found
hold true you can strengthen their reasoning skills.

4 Use of ICT

ICT offers good opportunities to develop geometrical
reasoning and an appreciation of shape and space. For
example, pupils can use the programming language
Logo to explore properties of plane shapes, such as the
exterior angles of polygons. With dynamic geometry
software, they can use rapid geometric drawing to
explore a condition such as ‘one pair of opposite angles
of a quadrilateral is equal’, and discover the special
circumstances under which the condition is true. More
able pupils may be able to prove their conjectures
analytically, but the formal use of congruent triangles is
often needed, and for most pupils this will be tackled in
Key Stage 4.

5 Measures and mensuration

Pupils in Key Stage 3 need to develop their awareness of
the relative sizes of units, converting between them,
and using the rough equivalence of common imperial
and metric units. Towards the end of the key stage, they
need to become familiar with compound measures such
as speed or density. Help them to appreciate the
imprecision of measurement and to recognise the
accuracy to which measurements can be stated. Draw
as far as possible on their practical experience of
measures in other subjects, particularly design and
technology, science, geography and physical education.

Work on perimeter, area and volume will extend to a
range of shapes, including rectangles, parallelograms,
circles, cuboids and prisms. A project such as ‘design a
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swimming pool’ allows pupils to exercise imagination,
practise calculations of length, area and volume, and
experience working with larger numbers and units. The
heart of work on mensuration will be with triangles
which, at the end of the key stage, will extend to
Pythagoras’s theorem and similarity, leading on to
trigonometry. As far as possible, the relevant formulae
for calculating perimeters, areas and volumes should be
explored and justified logically, not simply stated as
facts. The use of formulae can be linked to work in
algebra, and can be enhanced by the use of
spreadsheets and graphical calculators.

6 Features of shape, space and measures in
Key Stage 3

To summarise, the distinctive features of shape, space
and measures in Key Stage 3 are:
• developing geometrical reasoning and construction

skills, and an appreciation of logical deduction;
• developing visualisation and sketching skills,

including a dynamic approach to geometry, making
use of ICT and other visual aids;

• developing awareness of the degree of accuracy of
measurements.

7 Key Objectives – geometry only

Year 7
• Plot the graphs of simple linear functions.
• Identify parallel and perpendicular lines; know the sum

of angles at a point, on a straight line and in a triangle.

Year 8
• Enlarge 2-D shapes, given a centre of enlargement

and a positive whole-number scale factor.
• Use straight edge and compasses to do standard

constructions.

• Deduce and use formulae for the area of a triangle
and parallelogram, and the volume of a cuboid;
calculate volumes and surface areas of cuboids.

• Identify the necessary information to solve a
problem; represent problems and interpret solutions
in algebraic, geometric or graphical form.

• Use logical argument to establish the truth of a
statement.

Year 9
• Construct functions arising from real-life problems

and plot their corresponding graphs; interpret
graphs arising from real situations.

• Solve geometrical problems using properties of
angles, of parallel and intersecting lines, and of
triangles and other polygons.

• Know that translations, rotations and reflections
preserve length and angle and map objects on to
congruent images.

• Know and use the formulae for the circumference
and area of a circle.

• Present a concise, reasoned argument, using
symbols, diagrams, graphs and related explanatory
text.

Year 9 objectives for able pupils
• Know that if two 2-D shapes are similar,

corresponding angles are equal and corresponding
sides are in the same ratio.

• Understand and apply Pythagoras’ theorem.
• Know from experience of constructing them that

triangles given SSS, SAS, ASA or RHS are unique, but
that triangles given SSA or AAA are not; apply these
conditions to establish the congruence of triangles.

Extracts from ‘Supplement of examples: Years
7, 8, and 9’ are given on the following four
pages.
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Shape, space and measures

Pupils should be taught to: As outcomes, Year 7 pupils should, for example:

Know the sum of angles at a point, on a straight line and in a 
triangle, and recognise vertically opposite angles and angles
on a straight line.

Link with rotation.

Recognise from practical work such as measuring and paper
folding that the three angles of a triangle add up to 180˚.

Given sufficient information, calculate:
• angles in a straight line and at a point;
• the third angle of a triangle;
• the base angles of an isosceles triangle.

For example:
• Calculate the angles

marked by letters.

Identify properties of angles and parallel
and perpendicular lines, and use these
properties to solve problems (continued)

 x + y = 180˚

vertically opposite angles      angles on a straight line

x

x

215˚

a

a

b

b
x y
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As outcomes, Year 9 pupils should, for example:As outcomes, Year 8 pupils should, for example:

Understand a proof that the sum of the angles of a 
triangle is 180˚ and of a quadrilateral is 360˚, and that
the exterior angle of a triangle equals the sum of the
two interior opposite angles.

Consider relationships between three lines meeting
at a point and a fourth line parallel to one of them.

Use dynamic geometry software  to construct a
triangle with a line through one vertex parallel to the
opposite side. Observe the angles as the triangle is
changed by dragging any of its vertices.

Use this construction, or a similar one, to explain using
diagrams a proof that the sum of the three angles of
a triangle is 180˚.

Use the angle sum of a triangle
to prove that the angle sum of
a quadrilateral is 360˚.

(a  + b  + c ) + (d  + e  + f )
= 180˚  + 180˚  = 360˚

Explain a proof that the exterior angle of a triangle
equals the sum of the two interior opposite angles,
using this or another construction.

Given sufficient information, calculate:
• interior and exterior angles of triangles;
• interior angles of quadrilaterals.

For example:
• Calculate the angles marked by letters.

Geometrical reasoning: lines, angles and shapes

Explain how to find, calculate and use properties of
the interior and exterior angles of regular and
irregular polygons.

Explain how to find the interior angle sum and the
exterior angle sum in (irregular) quadrilaterals,
pentagons and hexagons. For example:

• A  polygon with n sides
can be split into n – 2
triangles, each with an
angle sum of 180˚.

So the interior angle sum is (n – 2) × 180˚ , giving
360˚  for a quadrilateral, 540˚ for a pentagon and
720˚  for a hexagon.

At each vertex, the sum
of the interior and exterior
angles is 180˚.

For  n vertices, the sum of n interior and n exterior
angles is  n  × 180˚.
But the sum of the interior angles is (n –2)  × 180˚,
so the sum of the exterior angles is always
2 × 180˚  = 360˚.

Find, calculate and use the interior and exterior
angles of a regular polygon with  n sides.
For example:

• The interior angle sum  S for a polygon with n sides
is S = (n – 2) × 180˚.
In a regular polygon all the angles are equal, so
each interior angle equals S divided by n .
Since the interior and exterior angles are on a 
straight line, the exterior angle can be found by
subtracting the interior angle from 180˚.

• F rom experience of using
Logo , explain how a 
complete traverse of
the sides of a polygon
involves a total turn of 360˚
and why this is equal to the
sum of the exterior angles.

Deduce interior angle
properties from this result.

Recall that the interior angles of an equilateral
triangle, a square and a regular hexagon are
60˚, 90˚  and 120˚  respectively.

c

d

f

y 46°76°

x

x

136°

a

e
b
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Shape, space and measures

Pupils should be taught to: As outcomes, Year 7 pupils should, for example:

Construct lines, angles and shapes Use, read and write, spelling correctly:
construct, draw, sketch, measure… perpendicular, distance…
ruler, protractor (angle measurer), set square…

Use ruler and protractor to measure and draw lines to the
nearest millimetre and angles, including reflex angles, to the
nearest degree.

For example:

• Measure the sides and interior angles of these shapes.

See Y456 examples.

Link to angle measure.
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As outcomes, Year 9 pupils should, for example:As outcomes, Year 8 pupils should, for example:

Construction and loci

Use vocabulary from previous year and extend to:
bisect, bisector, mid-point… equidistant…
straight edge, compasses… locus, loci …

In work on construction and loci, know that the
shortest distance from point P to a given line is taken
as the distance from P to the nearest  point N on the
line, so that PN is perpendicular to the given line.

Use straight edge and compasses for constructions.

Recall that the diagonals of a rhombus bisect each
other at right angles and also bisect the angles of
the rhombus. Recognise how these properties, and
the properties of isosceles triangles, are used in
standard constructions.

• Construct the mid-point
and perpendicular bisector
of a line segment AB.

• Construct the bisector
of an angle.

• Construct the perpendicular
from a point P to a line
segment AB.

• Construct the perpendicular
from a point Q on a line
segment CD.

Know that:
• The perpendicular bisector of a line segment is

the locus of points that are equidistant from the
two end points of the line segment.

• The bisector of an angle is the locus of points that 
are equidistant from the two lines.

Link to loci and properties of a rhombus, and to 
work in design and technology.

Use vocabulary from previous years and extend to:
circumcircle, circumcentre, inscribed circle …

Use straight edge and compasses for constructions.

Understand how standard constructions using
straight edge and compasses relate to the properties
of two intersecting circles with equal radii:

• The common chord and the line joining the two
centres bisect each other at right angles.

• The radii joining the centres to the points of
intersection form two isosceles triangles or a 
rhombus.

Use congruence to prove that the standard
constructions are exact.

Use construction methods to investigate what
happens to the angle bisectors of any triangle, or the
perpendicular bisectors of the sides. For example:

• Observe the position of the centres of these
circles as the vertices of the triangles are moved.

Construct a triangle
and the perpendicular
bisectors of the sides.
Draw the circumcircle.

Construct a triangle
and the angle bisectors.
Draw the inscribed circle.

Link to properties of a circle, and to work in
design and technology.
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1 Spatial Thinking

Among the many modalities of human thought, two
are particularly common: verbal reasoning and spatial
reasoning. Verbal reasoning is the process of forming
ideas by assembling symbols into meaningful
sequences. Spatial reasoning is the process of forming
ideas through the spatial relationships between
objects. It is the form of mental activity which makes it
possible to create spatial images and manipulate them
in the course of solving practical and theoretical
problems. Because space is a fundamental feature of
the human environment, spatial thinking plays a crucial
role in even the most ordinary human problem solving.
People process spatial information when they navigate,
when they manipulate objects, and when they design
them. Geometry is an example of spatial reasoning at
work. 

The mathematician Jacques Hadamard argued that
much of the thinking that is required in higher
mathematics is spatial in nature. Einstein’s comments on
thinking in images are well known. Numerous
mathematicians report using spatial skills when they
visualise mathematical relations. Physical scientists also
report using such skills when they visualise and reason
about the models of the physical world. 

Spatial thinking is an important component in solving
many types of mathematics problems. This includes the
use of diagrams and drawings, searching for patterns
and structures, graphing numbers, considering how
fractions can be broken down into geometrical regions,
conceptualising mathematical functions, and so on.
Spatial thinking has an important role in mathematics
achievement, with positive correlations found between
spatial ability and mathematics achievement at all levels. 

Investigative tasks in geometry and measurement
provide opportunities for students to analyse
mathematically their spatial environment, to describe
characteristics and relationships of geometric objects,
and to use number concepts in a geometric context. In
this way, students develop and use spatial thinking.
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2 Visualisation

Visualisation is generally taken to refer to “the ability to
represent, transform, generate, communicate,
document, and reflect on visual information”
[Hershkowitz, 1989]. As such, it is a crucial component
of learning geometrical concepts. Moreover, a visual
image, by virtue of its concreteness, is “an essential
factor for creating the feeling of self-evidence and
immediacy” [Fischbein, 1987, p.101]. Therefore, it “not
only organizes data at hand in meaningful structures,
but it is also an important factor guiding the analytical
development of a solution” [ibid].

Visualisation is essential to problem solving and spatial
reasoning as it enables people to use concrete means to
grapple with abstract images. In mathematics the
process of visualisation entails the process of forming
and manipulating images, whether with paper and
pencil, technology or mentally, to investigate, discover
and understand. The original meaning of the Greek
word for ‘to prove’ (deiknumi) was to make visible or
show. 

There are serious reasons for being good at
visualisation. From 2-dimensional pictures, it is often
useful to determine the possible shapes of 3-
dimensional objects, and vice versa. For instance,
doctors and dentists and others in the health profession
often need to determine from X-rays or MRI pictures the
precise position and shape of an organ or bone or tooth
or tumour. Geometry provides the concepts that assist
in this work - concepts like cross section and contour
curve.

Mathematics has a long tradition of interest in
visualisation methods. Such classic works as
Anschauliche Geometrie by Hilbert and Cohn-Vossen
(translated as Geometry and the Imagination)
demonstrate the influence of this visual approach to
mathematics (indeed, it is worth noting that the English
translation of the title only barely does justice to the
complex nuances of the German anschaulich).

While visualisation process has been a cornerstone of
the mathematical reasoning process since the times of
the ancient geometers, the advent of high-performance
interactive computer graphics systems has opened a
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Appendix 8: Spatial thinking and visualisation

contributed by Keith Jones



new era that is still evolving. Mathematical visualisation
is about much more than ‘pretty’ graphics; it has
become a mathematical discipline and involves
concepts in mathematics with growing implications and
applications across a range of disciplines. The aim of
mathematical visualisation is to offer efficient
visualisation tools for many areas of mathematics,
thereby creating tangible experiences of abstract
mathematical objects and concepts. Typical geometric
problems of interest to mathematical visualisation
applications involve both static structures, such as real
or complex manifolds, and changing structures
requiring animation. In practice, the emphasis is on
manifolds of dimension two or three embedded in three
or four-dimensional spaces due to the practical
limitations of holistic human spatial perception. 
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The main body of this report speaks positively about the
role of proof in the teaching and learning of geometry.
In this appendix we will try to make clear what we mean
by proof, what its role is in school mathematics, and
why it is important, and will then give some varied
examples of interest.

1 Terminology

First, then, we will try to make clear what we mean by
proof. Many near synonyms of the word ‘prove’, such as
‘explain’, ‘justify’, ‘deduce’, ‘demonstrate’ ‘use reasoning
to show’, appear in the National Curriculum. We wish to
draw a distinction here between some related notions.

a) Firstly, there is a logical argument which
demonstrates the truth of some claim - this may be a
formal argument or an informal but valid argument
which, with skill and experience, could be refined to
a formal argument. The words listed above all
represent shades of this notion. We term them all as
proof here. Proof is a concept which is central to
mathematics. By this process, mathematicians over
the centuries have built up a huge body of
knowledge which is established in a sense which no
scientific theory can ever be.

b) Next, there is a notion which arises in relation to a
mathematical conjecture and is analogous with what
happens with scientific theories. A conjecture, like a
theory, will fit known facts and may lead to
predictions which can then be checked in specific
instances, possibly in very many instances. This we
will describe as ‘providing evidence’ for the
conjecture. This evidence provides some reassurance
that the conjecture is reasonable or possibly likely to
be true. But it does not actually demonstrate its
truth; conjectures, like scientific theories, from time
to time need to be revised to fit with newer
observations or even to be rejected.

c) Finally, it is important to distinguish the mathematical
usage of the term proof from that used in everyday
language when a strong argument supported by
evidence (eg in a court of law or a tribunal) may
occasionally be termed a proof. A version of this might
appear in the mathematics classrooms when a pupil
explains why she or he believes that something is true
but without actually providing any logical argument.

A ‘theorem’ is simply a mathematical statement of some
interest which is known to be true because it has a
proof, ie a logical demonstration of the truth of that
statement. That statement might also be termed a fact
or result. A theorem will typically state that, under
specific conditions, explicit or implicit, a certain
conclusion is true. Its proof will make use of previously

established results and logical argument to demonstrate
this truth. The process of deduction must be robust, so
that if the conditions are satisfied then the facts
established by the theorem must be true.

The process of proof must begin somewhere. The
starting point for abstract mathematics is a minimal
collection of initial reasonable assumptions termed
axioms. These then form an implicit part of the
assumptions of the results which follow. In the context
of school mathematics, however, experience has shown
that this is not a sensible approach. Rather, one should
start with some well-known or ‘obvious’ facts which
need to be carefully chosen and, in a sense, explicit.
Then, using deductive reasoning, a collection of related
results, of a less obvious nature, should be built up.

2 Benefits of training in proof

It is true that much that is mathematical can be done
without being concerned with proof. Indeed all
mathematics prior to the ancient Greeks, and much
thereafter, was based on techniques which were seen to
work; and one can still simply teach and use
mathematical techniques and facts with no mention of
proof. Moreover, understanding and producing proofs
is not the easiest of skills to teach or learn. So there need
to be strong reasons for building proof into the
mathematics curriculum.

We note first that it is widely believed that pupils retain
mathematics best when they understand it; so it is
eminently practical to try to ensure that pupils have such
understanding. Now a full understanding of why some fact
is true or why some technique works is, essentially, a proof
of it. (This, of course, presupposes that the pupil gains such
understanding - so the way in which the pupil meets proofs
needs great care on the part of the teacher. The results and
proofs used need to be matched to the pupil.)

If well done, justifying through proof has a liberating
effect on pupils since it enables them to see why results
in mathematics are true and why particular
mathematical techniques work. They no longer need to
accept this on the authority of the teacher or textbook -
instead they know from their own thinking that it is so,
they ‘gain ownership’.

Having results linked via the process of logical deduction
helps demonstrate that mathematics is not a collection
of isolated facts but a coherent whole.

Proof is an important part of what mathematics is. No
one should be considered cultured or educated unless
they have some understanding of what proof entails.
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Quite apart from its role in mathematics, logical and
deductive reasoning is valuable in a very wide range of
professions. Its role in society as a whole in encouraging
a healthy scepticism in young adults is also important.
The need for clear reasoning arises when it is considered
unwise to accept what is offered at face value. In an
increasingly technological society where access to
snippets of information is extremely easy, it is very
important that tomorrow’s citizens have a questioning
disposition. It is partly the importance of the skills of
logical reasoning that has led to the central position of
mathematics in the curriculum over many centuries.

We hope it is becoming clear that, although we believe
proof to be important in school mathematics, we do not
regard teaching and learning about it as
straightforward. The teacher will need both skill and
patience in leading the pupils gradually from early and
acceptable simple explanations of an informal nature
towards more precise argument. The presentation of
proofs at a level of abstraction beyond a pupil’s current
understanding will achieve little. Indeed it should be
accepted that not all pupils will reach the level of being
able to construct formal proofs.

3 Proof and geometry

One might wonder why a report on geometry should focus
heavily on proof. As many comments from respondents
confirmed, Euclidean geometry was traditionally the area
of mathematics within which proof was first encountered
in a serious way, although this has not been as true in
recent years. It is true that proof is both possible and
desirable in other parts of school mathematics; and indeed
that some types of proof are not really geometric in nature.
But there is a case that, for some pupils, geometry is a
suitable area of school mathematics in which to begin
handling proofs. The arguments in this direction were
summed up neatly for us by one of our number, Tony
Barnard, in the following ten points, (some of which can be
found in JE McClure, ‘Start Where They Are: Geometry as
an Introduction to Proof’, American Mathematical
Monthly, January 2000).

Ten reasons why geometry is particularly suitable for
developing skills in mathematical thinking:

i) Familiar objects. Geometry enables pupils to
engage in proof (and with a system of logically
connected material) in a concrete setting where the
objects of attention - angles, parallel lines, triangles,
circles - are already familiar. In other areas where
pupils meet proof, they often have to cope with
additional difficulties such as the meaning of
symbols, abstract statements and quantifiers. 

ii) Description rather than definition. The activity
in geometry at school level takes place in a world
where things are ‘already there’. The properties and

relationships have to do with pre-existing mental
objects, rather than objects (such as a mathematical
group) which owe their existence and properties to
an abstract definition.

iii) Accessible statements. The statements made are
readily intelligible. For example, there is an
immediacy about the statement, “the angles of a
triangle add up to 180˚”, that is less evident in the
statement, “if b2<4ac, then the equation
ax2+bx+c=0 has no real roots”.

iv) Straightforward logic. The logical methods
involved in basic plane geometry tend to be less
subtle than those in other introductory parts of
mathematics; for example, they involve fewer
quantifiers and the ‘indecomposable statements’
are generally less complex.

v) An early start. In view of the points above, pupils are
able to use and develop their skills in logical thinking as
soon as they emerge, rather than wait till a later stage
in their mathematical education. This can have
advantages for their intellectual development
generally (and disadvantages if delayed).

vi) Synthetic deduction. Whereas most deduction in
school mathematics takes the form of a linear
sequence with each conclusion following from the
previous one (a single dominant cue prompting a
closed procedure), basic plane geometry involves
contemplating several statements at the same time,
reorganising them and drawing conclusions from the
collection as a whole.

vii) Route finding in solving problems.Geometry is
extremely suitable for developing the skills of
recognising and aiming for fruitful intermediate
objectives, providing an ideal visual and verbal scenario
for considering where you are, where you want to go,
and how you might get there. In geometry it is relatively
easy to set a problem for which (a) the solution is not
immediately obvious or reachable by a memorised
algorithm, but (b) a very little bit of playing about with
the problem (for example, marking all the angles and
sides that you can establish to be equal) will enable the
pupil to find the solution.

viii)A taste of higher mathematics. It is possible to do
serious mathematical learning in geometry without
having a perfect understanding of what axiom systems
are and what the rules are for working with them.

ix) Not having to take things on trust. It has been
said that one of the unique features of mathematics
is that it is the only subject where you don’t have to
take things on trust. Geometry is well suited for
demonstrating that mathematics is not something
handed to pupils by an authority (whether that is a
person, a book or a computer), but is something
they can find inside their own heads, and that when
they have found it they will have access to a system
of truths which is entirely different in nature from any
other system. Not only is it important to be able to tell
the difference between something which is proven
and something which is not, but a mathematical
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education should, at the very least, include the
realisation that there is this dimension to knowing.

x) Surprising effectiveness. In geometry, there is the
situation where a small number of plausible
assumptions lead to a large number of surprising and
appealing results. Isaac Newton expressed this point
well when he wrote: “It is the glory of geometry that
from so few principles, fetched from without, it is able
to accomplish so much.” Philosophiae Naturalis
Principia Mathematica, Praefat.

4 Examples of geometric proof

Now we illustrate some of these ideas through a
number of examples. Further examples are given in
Appendix 11.

a) Pythagoras’s theorem
There are many proofs, and an interesting task is to try
and collect some. Here are four. 

(i) The first is essentially quite visual in nature. The
triangle ABD is rotated through 90˚ about B. Why is
its image identical with triangle GBC? How does this
help show that the area of the square ABGF is the
same as that of the rectangle BDHJ where J is the
point of intersection of AH and BC? How does that
help prove Pythagoras?

(ii) The second is a more algebraic proof. It involves noting
that the small square together with four copies of the
right angled triangle fill the next size square, thus 
c2 = (b-a)2 + 4.(ab/2). When simplified, this gives 
c2= b2 + a2. Similarly the largest square, shown with
dotted lines, is made up from the square of side c
together with four of the right-angled triangles. This
gives another means of derivation.

(iii) The third is more visual, showing dissections of two
of the squares. The challenge here is to
demonstrate that the non-square quadrilaterals are
congruent, and so have the same area.

(iv) Finally, a proof of Pythagoras which uses similarity
of triangles. The triangles ABC, ACD and CBD are all
similar and so their areas are in proportion to the
squares of their corresponding sides, i.e. c2 : b2 : a2 . 
Hence, for some k ≠ 0, k a2 + k b2 = k c2 and
Pythagoras follows.
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b) The regular solids

A very different style of proof, that of proof by
exhaustion, is provided by Sir Christopher Zeeman. This
is an example of a proof in a 3-D context which is
accessible to students with a wide range of ability.

Definition 
A regular solid is a convex solid which has all its faces
equal to the same regular polygon, and the same
number of faces at each vertex.

Theorem
There are exactly 5 regular solids.

Proof
Given a regular solid, the ring of faces around a vertex
contains at least 3 faces, and, if the ring is cut open along
an edge and flattened out, it will occupy strictly less than
360 degrees. If the faces are equilateral triangles the ring
can contain only 3, 4, or 5 triangles because 6 would
occupy the full 360 degrees; there are 3 cases:

If the faces are squares there is only one case because 4
squares would occupy 360 degrees:

If the faces are pentagons there is similarly only one case:

There are no more cases because 3 hexagons (or higher
polygons) would occupy 360 degrees (or more).
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3 triangles

4 triangles

5 triangles

giving a tetrahedron

giving an octahedron

giving an icosahedron

3 squares giving a cube

3 pentagons giving a dodecahedron



c) Circle theorems

The third set is taken from the Mathematical Association’s
book Can you prove it ? by Sue Waring and shows possible
approaches to one of the circle theorems.

You may find it helpful to extend the arms of some
angles when measuring them.

In each diagram above angles A, B, C, and O are standing
on (subtended by) an arc PO of a circle centre O.

1. In each diagram measure angles, A,B and C and
record the results in a table:

Diagram    A  B  C
1
2

2. What seems to be true in each case?
3. In each diagram draw another angle standing on an
arc PO and label it D. Predict the size of angle D and then
measure it. If your predicted and measured values agree
record them as column D in the table. If not, re-measure
angle D.

Diagram 6

4. In diagram 6 measure angle A and predict the size of
angles B and C. Check your predictions. On what basis
did you make them?
5. In all diagrams measure the angle at the centre of the
circle marked O, and record in your table, as column O.
6. What seems to be true in each case?

7. In diagram 7 measure angle A and then predict the
size of angle O. Check your prediction by measuring. On
what basis did you make your prediction?
8. There is a connection between correct answers to
questions 2 and 6. What is it?

You now have two related conjectures arising out of
results of measurements in seven circles.

To prove: the angle at the centre of a circle is equal to
twice any angle at the circumference standing in the
same arc.

Proof

This diagram has the same form as diagram 7 above
with the line AON through the centre of the circle,
added. It divides angle PAQ into two parts of sizes x˚ and
y˚. Write down the size of angle PAQ.

What can you say about OP, OA and OQ?…. Why?
What kinds of triangles are OAP and OAQ…. Why?
What are the sizes of angles OPA and OQA?….Why?
What are the sizes of angles AOP and AOQ?…. Why?
What are the sizes of angles PON and QON?….Why?
Write down the size of angle POQ.
What is the connection between angle POQ and angle PAQ?
Was angle A special in any way?
Would the above argument apply to any angle at the
circumference?
What can you deduce about such angles?

EXTENSION
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Diagram 7

In this diagram PQ is the 
diameter of the circle.
What is the size of angle
POQ?…Why?
What can you deduce about 
angle PAQ….Why?
Write down a general conclusion.



Theorem: the angle at the centre of a circle is twice any
angle at the circumference (standing on the same arc).
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To Prove

Proof

(because)

Also

and 2x + 2y = 2(x + y)

AÔB = 2 x AĈB

Join CO and produce to D

CO = AO (radii of circle)

OĈA = OÂC
(base angles of isosceles triangle)

AÔD = 2 x AĈO
(exterior angle of a triangle equals the
sum of interior opposite angles)

Similarly

DÔB = 2 x OĈB

AÔB = AÔD + DÔB

= 2 x AĈO + 2 x DĈB

= 2 x (AĈO + DĈB)

= 2 x AĈB



d) Golden ratio and the construction of a pentagon
/ pentagram

Finally, we present a short outline by Adrian Oldknow
which connects some geometric and algebraic ideas
involved with the golden ratio. The golden ratio (1+√5)/2,
or about 1.618, is also known as the ‘divine proportion’,
and is often associated with beauty. Golden ratio is also
intimately connected with the regular pentagons.

The diagram below shows a regular pentagon ABCDE
together with three of its diagonals. The sides of the
pentagon are taken as length 1, and the first objective is
to find the length r of a diagonal (with r > 1). The
internal angles of the pentagon are each 108˚ (why?),
and hence the angle marked at ECD is 36˚ (why?). Can
you now find the size of every angle in the figure
below? There are many isosceles triangles, some
congruent like ECD and CAB, some similar like EFC and
BFA. There is also a rhombus, CDEF, and trapezia like
CEAB. Can you mark any pairs of line segments which
are parallel? Can you explain why they must be parallel? 

Can you explain why AFE is an isosceles triangle? 
Given that it is, then EF = 1 and FB = r - 1
Now consider the similar triangles FCE and FAB. FCE has
sides 1,r,1 and FAB has sides r-1,1,r-1 . As the ratios of
the sides must be the same we have: 1/r = (r-1)/1 .
Can you rearrange this to give a quadratic equation in r ?
Given that r>1 , can you show that r = (1 + √5)/2 ≈ 1.618 ?

Now the challenge is to work backwards to see if given
a side AB of length 1 we can use this information to
construct a ‘perfect’ pentagon. Now the ancient Greeks

could use their geometry in much the same way as we
use a calculator today. How do you think Pythagoras
might have drawn a length of √5 if he already had a
segment of length 1?
Can you suggest what sorts of right-angled triangles
might have a hypotenuse of length √5?
How to you think he might have added two numbers
geometrically, such as 1 and √5?
How could he have used a construction to do the same
job as dividing by 2?

In the construction below we illustrate one way of
putting this theory into practice.
AB is the side of length 1. We construct the
perpendicular to AB at A so that we can make a right-
angled triangle. We want to find a point H on this line so
that AH = 2, so using compasses we can first find G so
that AG = 1 by drawing the circle centre A through B to
cut the perpendicular. Then we can use compasses
again (how?) to find H. Now BAH is a right-angled
triangle with sides 1 and 2, and hence a hypotenuse of
√5. In order to divide by 2 we need to find mid-points.
Construct I as the mid-point of AB, so that IB = 1/2. The
perpendicular bisector of AB cuts BH in J where BJ =
√5/2. Now we just need to ‘add’ IB and BJ together, so
we need to ‘swing’ BJ round to line up with IB. Can you
see how to do this? The segment IK now has the
required length r . Using compasses with this as radius
can you see how to construct the vertex D of the
pentagon? How can you find the other two vertices C
and E? So now you can complete the pentagon, and, by
drawing all its diagonals, also create a pentagram. What
shape appears in the middle of the pentagram? How
are its sides related to the sides of the bigger pentagon?
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There are many examples to be found in familiar rigid
structures and in mechanisms. Many of these have been
collected in a form suitable for classroom use by Brian
Bolt. The following extract on rigid structures is taken
from Brian Bolt’s submission to the working group.

1 Rigid structures
Make a triangle linkage
from plastic geostrips or
card strips using paper
fasteners to join their
ends. If you place the
linkages on a table and fix
AB then the point C or the
triangle linkage is also

fixed, but points C
and D of the
quadrilateral
linkage are free to
move. This
illustrates the innate
rigidity of the
triangle linkage, but
lack of rigidity of the

quadrilateral linkage. The traditional cycle frame makes use
of the triangles strength at the rear, but the main part of the
frame BCDE, which supports the front forks, is dependent
on the strength of the welds in the joints. 

If you are observant you will not have to look far to see
places where the rigidity of the triangle is used.  Look at
a folding chair, the fastening which hold a window
open, the roof timbers in a house, an umbrella, a
rotating clothes airier, the legs of an ironing board, the
design of a traditional 5-bar gate, just to name a few.

To increase understanding of which two-dimensional
frameworks are intrinsically rigid an investigation can be
made, for example, of what struts can be added to a
quadrilateral in order for it to maintain one shape. It is
soon clear that one of the diagonals will suffice but how
about all the other possibilities suggested by the
following drawings. A traditional geometrical education
gives little help in this and it is essential to make models
to come to terms with the problem.

Having decided which of the above frameworks are
rigid the investigation can be followed up by
considering pentagonal or hexagonal frameworks. How
about the following? Are any of them rigid? What is the
minimum number of struts required to ensure that an n-
gon framework is rigid?

This concept of intrinsically rigid framework should be
extended into three dimensions. There are so many
structures in our modern society where they can be
observed. Tower cranes can be seen like exotic creatures
looking down on the buildings being built beneath
them. The structures of their towers and their jibs are
prime examples of rigid frameworks as are the electrical
pylons which stride like giants across the countryside.
Many bridge structures such as the famous Forth Bridge
in Scotland or the Sydney Harbour Bridge in Australia
are well known examples but so are the many railway
bridges from the pioneering days when they were made
of timber to the metal ones of today. The Eiffel Tower in
Paris is such a structure, but on a small scale look at the
scaffolding on a building site or visit a fun fair to see
exciting examples. 
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2 Garage door

An example of modelling the mechanism for an ‘up and
over’ garage door is given in [Oldknow and Taylor,
2000]. This provides a good example for the study of
locus.

Here the door is represented by AD. The bar EB is free
to rotate about the top of the door frame E, and a

fixed pin at B. The pin at C is free to slide inside a
groove along EF. A model can easily be made using
drawing tools, cardboard strips or geometric software.
Using dynamic geometry the loci of points such as A, B
and D can be drawn. Given that BA = BE = BC
geometric reasoning can be used to establish the loci
of A and B. At A-level, coordinate geometry can be
used to find the coordinates (x,y) of D in terms of the
angle θ = BEF and the lengths a = AB and b = CD , and
hence to deduce the equation of the locus of D as an
arc of an ellipse.

3 A car steering mechanism

The following is adapted from Teaching Mathematics
with ICT by Adrian Oldknow and Ron Taylor.
The system, known as Ackermann steering, is based on
a trapezium. When the front wheels are pointing
straight ahead, the quadrilateral PQRS forms a
trapezium. The ‘stub axle’ UP makes a fixed angle with
the ‘track-rod end’ PQ, and they both pivot about the
fixed point P (the ‘king-pin’).  Similarly for R,S and T.
Points Q and R are joined by a rod, called the tie bar,
which can pivot loosely at Q and R. If Q is moved on a
circular arc centre P, so R describes a circular arc centre
S. For a given wheelbase UT and length between axles,
the shape of the trapezium is defined by the two
parameters p = PQ, the length of the track rod ends, and
q = QR, the length of the tie bar. As Q slides on the arc
centre P, the stub axles PU and ST turn through different
angles. (They would be the same if PQRS was a
parallelogram.)

Now it is highly desirable that when taking a bend, the
four circles to which the tyres are tangents should all
have the same centre - otherwise the front tyres will
soon lose their tread. The design problem is to choose p
and q so that the point V of intersection of the stub
axles produced lies as close to the line AW as possible
for all positions of Q. Of course there also physical
constraints on the maximum sizes of p and q.
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4 A London day

Now that digital cameras, or scanners for computers, are
more or less commonplace a trip out can be used to
capture a variety of geometric images which might act as
stimuli for work in geometry in schools and colleges. Here
are a set of photographs taken of the ‘London Eye’. Can

you suggest what sort of route the camera operator took
while shooting these pictures? Why is it that a circular
object appears elliptical when viewed from an angle. Can
you find a way to use the ratio between the shortest
diameter and the longest diameter of a picture of a circle
to work out the angle the picture must have been taken
from, measured from the axis of the circle?
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The diagram above suggests making a dynamic model
e.g. in Cabri from which you could study the behaviour
of the locus of V as the parameters p and q are changed.
You could also make an analytic model using the angle
QPS = θ as independent variable, and splitting the
quadrilateral PQRS into two triangles. Using the sine
and cosine rules you can find the angle QRS = φas a
function of θ (perhaps in a spreadsheet?), and compare
it with the desired value φ′ found when V is on AW. 
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5 CAD and Bézier curves

Design tasks used to be carried out using drawing
boards. In order to draw smooth curves there was a
device called a ‘draughtman’s spline’ - where weights
could be placed on the board, with grooves on their top,
through which a flexible piece of steel, or laminated
wood (called a ‘spline’) could be passed. As the weights
were moved so the flexible curve could be controlled to
take a desired shape. With the move to computer based
design there have been several systems developed to
produce a ‘virtual’ equivalent to the physical ‘flexible
curve’. One such fundamental form for representing
flexible curves in Computer Aided Design is based on
Bézier curves. Here n+1 points are defined on the screen
which are used to define a unique n-th degree
polynomial. If any point is moved, then the whole curve
is changed. The points are called ‘control points’, and
the effect is called ‘global control’. Unlike some other
systems for producing flexible curves, Bézier curves do
not, in general, pass through the control points (other
than the first and last). The curves are usually defined
algebraically using binomial coefficients. However they
can also be constructed by a set of dilations
(also known as dilatations). 

First we define a parameter between 0 and 1
by taking a point T which can slide on a
segment PQ, and taking the ratio of PT to PQ
as the parameter t ( with 0 ≤ t ≤ 1 ). Points A, B,
C, D etc. are used to define the curve. The
diagrams below show the special cases of a
quadratic curve defined by three control
points A,B,C and a cubic curve defined by
adding a fourth control point D. The point B′
on AB is the image of B when dilated with
centre A and scale factor t.  The points C′ and

D’ are similarly defined. The point C’’ on B′C′ is the
image of C’ when dilated with centre B’ and scale factor.
The locus of C’’ as T slides on PQ is the desired quadratic.
Points D’’ and D’’’ are similarly defined, and the locus of
D’’’ is the desired cubic.

The quadratic curve starts at A, tangent to AB and
finishes at C tangent to BC. If a is the position vector of
A, etc. then b’ = (1-t)a + tb , and similarly for c’ and d’. 
Hence c’’ = (1-t)b’ + tc’ from where you can show that
the locus of C’’ is quadratic in the parameter t, and
deduce the claims about tangency. What can you say
about the locus of D’’ shown above? Now define D’’’ as
the image of D’’ when dilated with centre C’’ and scale
factor t. The position vector of D’’’ is the weighted
average of the position vectors of C’’ and D’’ and so its
locus is a cubic. Can you find its form in terms of t ? A, B,
C and D need not be coplanar, and hence the locus of
D’’’ can represent a ‘twisted’ curve in space, such as a
section of a car’s exhaust system. Cubic curves are
frequently used as the basis for design systems since
they are the simplest polynomials which can exhibit
inflections.
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Given here are examples of topics in 3-dimensional
geometry that have been successfully used in Royal
Institution masterclasses. To illustrate how each topic
might be taught I state and prove one or two theorems,
followed by some exercises (with solutions given at the
end). I have selected the theorems that are surprising,
some classical and some modern, but all with short
understandable proofs. I have chosen theorems that are
essentially 3-dimensional, and will specifically enhance
3-dimensional thinking, which is an acquired skill useful
throughout all branches of mathematics and science.
The following five topics have been covered:

1. Perspective;
2. Regular solids;
3. Tetrahedra;
4. Spherical triangles; 
5. Knots & links.

Topics 1,3 and 4 are found in this Appendix; an extract
of topic 2 is contained within Appendix 9, and the
whole of topics 2 and 5 are available via the Royal
Society website at www.royalsoc.ac.uk  

Assumptions:
(a) Intersections
In general:
• 2 planes meet in a line;
• a line meets a plane in a point;
• 3 planes meet in a point.
Exceptions occur when: 
• the 2 planes are parallel; 
• the line is parallel to, or contained in, the plane; 
• the 3 planes are parallel, or the line of intersection of

2 of them is parallel to, or contained in, the third.
(b)Two lines
2 lines are contained in a plane if and only if they meet
or are parallel. If 2 lines are not contained in a plane
then they neither meet nor are parallel, and they are
called skew.

Definitions of ‘perpendicular’
• 2 meeting lines are perpendicular if they are at right

angles.
• 2 skew lines are perpendicular if a line parallel to one

and meeting the other is perpendicular to it.
• A line is perpendicular to a plane if it is perpendicular

to 2 non-parallel lines in the plane, and consequently
to every line in the plane.

• 2 planes are perpendicular if there is a line in one
perpendicular to the other.

1 Perspective

Imagine painting a 3-dimensional scene on a pane of
glass P placed in between the scene and the eye E.

Definition 1: The image A’ of a point A is where the ray
EA pierces P. If also the image of B is B’ then the image of
the line AB is A’B’.

Definition 2: The vanishing point V of a set of S of
parallel lines is where the parallel line through E pierces P. 

Theorem 1: All the images of S go through V.

Proof: 
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It suffices to prove that the image of one line, when
extended, goes through V, because by the same proof
they all will. Let AB be the line. Then EV is parallel to AB
by definition 2, and therefore they both lie in a plane Q.
The 3 points A’, B’ and V all lie in both the planes P and
Q and hence on their line of intersection. Therefore
extending A’B’ along this line goes through V.

Drawing a cube 

A cube has 3 sets of 4 parallel edges, and therefore a
drawing of a cube needs 3 vanishing points. Choose an
acute-angled triangle XYZ, and use the vertices as the
vanishing points as shown. To then see the cube in
perspective we must place the eye E in a position such
that the lines EX, EY and EZ are parallel to the edges of
the cube, which are perpendicular to each other.
Therefore we define:

Definition 3: An observation point E is a point such
that EX, EY and EZ are perpendicular to each other.

Theorem 2: There is exactly one observation point in
front of P.

To prove the theorem we shall need the following lemma:

Lemma: If EX, EY are perpendicular then E lies on the
sphere diameter XY.

Proof: 

Complete the rectangle XEYF by drawing lines through
X, Y parallel to EY, EX to meet in F. Let O be the
intersection of the diagonals XY & EF. Then by symmetry

OX=OE=OY=+OF. Therefore the circle centre O and
radius OX is the circle diameter XY which goes through
E. If we spin the circle about XY we obtain the sphere
diameter XY.

Proof of Theorem 2:

Let E be an observation point. Let S, T, U be the spheres
diameters XY, XZ, YZ respectively. Since EX, EY are
perpendicular, E lies on S by the lemma, and similarly on
T & U. Therefore we have to find the intersection of all 3
spheres. If C is the circle of intersection of S and T then
we have to find the intersection of C with the third
sphere U. Now X lies on C. Let D be the foot of the
altitude from X to YZ. Then D lies on S because XDY is a
right-angle. Similarly D lies on T and hence on C.
Meanwhile D lies in between Y and Z because XYZ is an
acute-angled triangle, and so D lies inside U.
Meanwhile X lies outside U because YXZ is less than a
right angle. Therefore C contains points both inside and
outside U. Therefore C pierces U at 2 points. One of
these points lies in front of P and the other is its mirror
image behind P, because P is a plane of symmetry of all
three spheres. Therefore there is exactly one observation
point in front of P, as required.

Exercises 

1. Prove the observation point lies in front of the
orthocentre O of XYZ (ie that EO is perpendicular to
P)

2. Draw on the board an equilateral triangle XYZ of side
1 metre. Use the vertices as the 3 vanishing points to
draw some rectangle boxes in perspective. View from
1/√6 metre in front of the orthocentre and confirm
that the boxes all look 3-dimensional and
rectangular.

3. Prove that if XYZ is obtuse-angled then there is no
observation point.

The Royal Society70 | July 2001 | Teaching and learning geometry 11-19



3 Tetrahedra

There are 4 theorems about 3 lines in a triangle meeting
at a point: the 3 medians meet at the centroid, the 3
side-besectors meet at the circumcentre, the 3 angle-
bisectors meet at the incentre and the 3 altitudes meet
at the orthocentre. We shall show that three of these
theorems can be generalised to a tetrahedron in 3-
dimensions, but the fourth cannot.

Definition 1: A median of a tetrahedron is the line
joining a vertex to the centroid of the opposite face.

Theorem 1: The 4 medians of a tetrahedron are
concurrent at a point G.

Proof: 

Let a, b, c, d be the vectors of the vertices A, B, C, D
(with respect to some origin). Then the centroid E of
BCD has the vector e=(b+c+d)/3
If G is the point with vector g=(a+b+c+d) /4 then g=a/4
+ 3e/4. Therefore G lies on AE. Similarly for the other 3
medians.

Exercise 1: Show that G is the midpoint of each of the
three lines joining the midpoints of opposite edges of
the tetrahedron.

Definition 2: The bisector of a line AB is the plane
perpendicular to, and through the midpoint of, AB; it is
the set of points equidistant from A and B.

Theorem 2: The 6 edge-bisectors of a tetrahedron are
concurrent at a point S, which is the centre of the
circumsphere.

Proof: 

Let the tetrahedron be ABCD. Let S be the meet of the
bisectors of AB, BC and CD.
Then AS=BS since S lies on the bisector of AB;
BS=CS since S lies on the bisector of BC; and 
CS=DS since S lies on the bisector of CD.

Therefore S is equidistant from all 4 vertices, and so the
sphere centre S through one vertex is the circumsphere
going through all 4, and S lies on every edge-bisector.

Exercise 2: Show that the 4 lines through the 4
circumcentres of the 4 faces, and perpendicular to those
faces, are concurrent at S.

Definition 3:  Let a, b, c, d, denote the faces of the
tetrahedron opposite the vertices A, B, C, D.

Two faces a, b, meet in the edge CD: define the angle-
bisector of ab to be the plane through that edge making
equal angles with a and b; it is the set of points
equidistant from a and b.

Theorem 3: The 6 angle-bisectors of a tetrahedron are
concurrent at a point I,which is the centre of the insphere.

Proof: Let I be the meet of the angle-bisectors of ab, bc
and cd. Then I is equidistant from a & b since it lies on
the angle-bisector of ab, also from b and c since it lies on
the angle-bisector of bc, and also from c and d since it
lies on the angle-bisector of cd. 

Therefore I is equidistant from all 4 faces, and so the
sphere centre I touching one face is the insphere
touching all 4, and I lies on every angle-bisector.
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Exercise 3: Show that the 4 lines going through the 4
vertices, each equidistant from the 3 faces at that
vertex, are concurrent on I.

Definition 4: An altitude of a tetrahedron is a line
through a vertex perpendicular to the opposite face.

Theorem 4: In general the 4 altitudes of a tetrahedron
are not concurrent.

Proof: 

We construct a counterexample. Let ABCD be the
tetrahedron inscribed in a cube as shown. Then the
altitudes through A and D are AB and DC, which do not
meet.

Exercise 4: Show that if each edge of a tetrahedron is
perpendicular to the opposite edge then the foot of
each altitude is the orthocentre of the opposite face,
and the 4 altitudes are concurrent. Give two examples
of such tetrahedra.

4 Spherical Triangles

The theorem about the 3 angles of a triangle adding up
to 180 degrees can be generalised to spherical triangles,
and then used to give the sum of the 4 solid-angles of a
tetrahedron.

Definition 1: A great circle on a sphere is the
intersection of the sphere with a plane through its
centre. A spherical triangle consists of 3 arcs of 3 great
circles. Let A, B, C be the angles at the vertices (or more
precisely between the tangents to the sides of each
vertex). Let S = surface area of the sphere and T =surface
area of the triangle.

Theorem 1: A+B+C = 180(1+4T/S)

Example 1: The triangle shown has 3 right-angles and
so A+B+C =270. Meanwhile T occupies a quarter of the
northern hemisphere and so T/S =1/8

Example 2: If T becomes very small compared with S
(like a triangle on the surface of the earth) then the sum
of the angles tends to 180

To prove the theorem we need the following lemma:

Definition 2: Define the A-lune to be the area between
the 2 great circles through A.

Lemma: A-lune /S = A/180

Proof: Looking down on S from above A
A-lune/S=2A/360=A/180
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Proof of theorem 1: 

The 3 lunes cover the whole sphere, but cover the
triangle 3 times, which is 2 times too many, and the
same with the antipodal triangle. 
Therefore A-lune+B-lune + C-lune=S+4T
Therefore (A-lune +B-lune + C-lune)/S=1+4T/S
Therefore, by the lemma, (A+B+C)/180 = 1 + 4T/S
Multiplying by 180 gives the theorem.

Definition 3: In a tetrahedron ABCD define the solid-angle
A to be T/S, where S is the area of a small sphere centre A,
and T is the area of the triangle cut off by the tetrahedron.

Definition 4: Given an edge AB, define the dihedral-angle
of AB to be a/c, where c is the length of the circumference of
a small disc centred on and perpendicular to AB, and a is the
length of the arc cut off by the tetrahedron. Notice that 1
unit of dihedral angle equals 360 degrees.

Theorem 2: In a tetrahedron, (the sum of the 4 solid-
angles) =(the sum of the 6 dihedral –angles) – 1.

Exercises 
1. Deduce Theorem 2 from Theorem 1.
2. Show that in a regular tetrahedron: dihedral-angles

= cos-1(1/3) ; solid-angles = (3/2)cos-1(1/3) –1/4.
3. Calculate the dihedral and solid-angles of the

tetrahedron used in the proof of Theorem 4 in
Section 3.

Solutions to the exercises

Section 1: Perspective 

Exercise 1. Let E be the observation point, and O the
orthocentre of XYZ. The plane containing the circle C is
perpendicular to P and contains E and the altitude XD,
and hence O and the line OE. Similarly the planes
containing the other 2 circles of intersections of the 3
spheres are perpendicular to P and contain OE.
Therefore OE is perpendicular to P, as required.

Exercise 2. With respect to axes EX, EY, EZ, the
orthocentre O has coordinates (1/3)√2, (1/3)√2,
(1/3)√2). Therefore EO=√(3/18)= 1/√6

Exercise 3. If X is obtuse then X lies inside the sphere U,
along with D, and so C lies inside U. Therefore C does not
meet U. Therefore the 3 spheres do not meet, and so there
is no observation point. If Y or Z is obtuse then D lies
outside U, along with X, and so C lies outside U. Again C
does not meet U, and so there is no observation point.

Section 3: Tetrahedra

Exercise 1. Let X,Y be the midpoints of AB, CD. Then
x=(a+b)/2, y=(c+d)/2 and so g=(a+b+c+d)/4 = (x+y)/2.
Therefore G is the midpoint of XY.
Exercise 2. The line perpendicular to ABC through the
circumcentre of ABC is the set of points equidistant
from A, B, C, and therefore contains S. Similarly for the
other 3 lines.
Exercise 3. The line through A equidistant from b, c, d,
goes through I, and similarly for the other 3 lines.
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Exercise 4. Let AE be an altitude of the tetrahedron, and
suppose BE meets CD in X. Now AE is perpendicular to
BCD, and so AE is perpendicular to CD. Meanwhile AB is
perpendicular to CD by hypothesis. Therefore ABE is
perpendicular to CD. Therefore BX is perpendicular to
CD, and is hence an altitude of BCD. Therefore E lies on all
the altitudes of BCD, and is hence the orthocentre of
BCD. 

Meanwhile AX is perpendicular to CD, and is hence an
altitude of ACD, containing the orthocentre F of ACD.
Therefore the altitude BF of the tetrahedron lies in the
plane of ABE, and hence meets AE. Therefore all 4
altitudes of the tetrahedron meet pairwise, and are not
coplanar, and so they must be concurrent.

Examples (i) The regular tetrahedron;
(ii) The tetrahedron OXYZ where X, Y, Z, are the unit
points on the axes perpendicular OX, OY, OZ. 

Let C be the centroid XYZ. Then the altitudes of the
tetrahedron are OC, XO, YO, ZO, which are concurrent
to O.

Section 4: Spherical Triangles

Exercise 1. Let d(AB)=dihedral-angle of AB, and
s(A)=solid-angle of A. Then:
d(AB)+d(AC)+d(AD)=(1+4s(A))/2, by Theorem 1 (since
180 degrees equals half a dihedral unit). Summing over
the 4 vertices repeats each dihedral-angle twice:           
2(sum of the 6 dihedral-angles) = 2 + 2(sum of the 4
solid-angles).        
Dividing by 2 gives Theorem 2.

Exercise 2. Let e be the dihedral-angle of a regular
tetrahedron ABCD. Let E be the midpoint of CD, and O
the centroid of BCD. 

Then 3(OE)=BE=AE. Therefore cos e=1/3. Therefore
e=cos-1(1/3). The solid angle = (6e-1)/4 = (3/2)cos-1 (1/3)-
1/4

Exercise 3. Dihedral-angles AB, CD = 1/8
AD = 1/6
AC, BC, BD = 1/4
Solid angles A, D = 1/48
B, C = 1/16
Check: 2/48 + 2/16 = 2/8 + 1/6 + 3/4 - 1
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This appendix consists of an extract from a set of tables
which is not a scheme of work but a framework. It was
prepared by Richard Bridges, Margaret Brown, Sandy
Cowling, Caroline Dawes, Jane Imrie, Mary Ledwick and
Sue Pope. The complete set of tables can be found on
the Royal Society website at www.royalsoc.ac.uk

It is a working document created by the teachers on our
working group to show that the National Curriculum
can provide the basis for a challenging and interesting
geometry curriculum for all pupils. 

The tables are organised according to the National
Curriculum attainment levels (Key Stage 3) and GCSE
grades (Key Stage 4). They highlight teaching
opportunities including deduction and proof, and
contexts and applications. They amply illustrate the level
of detail which is required to plan a rewarding
curriculum for pupils at all levels of attainment and can
be used in creating schemes of work. They also remind
us that the National Curriculum (a) does not tell
teachers how to teach, or how to organise teaching,
and (b) specifies a minimum curriculum to which
confident teachers might well want to add further
material, such as that on networks illustrated here. 
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1 Introduction

We have already noted that the National Curriculum
does not say how aspects of mathematics should be
taught, nor, for example, do A/AS-level syllabuses. We
are concerned that aspects of the geometry curriculum
should not be taught in isolation. In this appendix we
give examples of (a) how particular aspects of the
geometry curriculum could be integrated within a
particular theme, (b) where particular aspects of
geometry could be linked with other areas of
mathematics such as algebra and handling data and (c)
where aspects of geometry could be linked with other
subjects such as science, history and art.

2 Integration of aspects of geometry within a
theme

A key to effective teaching of geometry is to combine
experiential work with more formal argument in solving
problems. As an example, consider straight edge and
compass constructions, which are included in the Key
Stage 3 programme of study. An approach sometimes
encountered is to teach these constructions as a series of
specific techniques, perhaps with some applications, such
as finding the incentre or circumcentre of a triangle. A
more fruitful approach could proceed as follows.

Certain questions are raised, such as ‘What is the locus
of a point which moves so that it is (a) an equal distance
from two fixed points or (b) an equal distance from two
fixed lines?’ These and similar questions are explored
practically, for example, by getting pupils to stand in
different places or using counters to represent points. In
the course of this exploration, other questions will arise,
for example, ‘What is meant by the distance of a point
from a line, and how is it found?’ (Dropping a
perpendicular from a point to a line is another standard
construction.)

Pupils become familiar with compasses as an instrument
for constructing the locus of points which are a fixed
distance from a fixed point. They recognise, for example
when constructing a triangle given SSS, that the point
of intersection of two circles is at specified distances
from two fixed points. 

The practical exploration of loci described above
motivates and provides a purpose for considering how
to construct bisectors of lines and angles. The pupils’
geometric awareness prompts consideration of how
compasses can be used in construction.

The geometric aspects which are key to these and other
basic constructions are those concerning the properties
of the diagonals of a rhombus, namely that they bisect
each other at right angles and also bisect the angles of
the rhombus. If pupils have prior knowledge of these
properties then, handled in an appropriate way, they
can be used to approach the constructions as problem
solving exercises, rather than a series of techniques to
be learned.

The benefits of this approach are that it develops
problem solving skills, application of known results and
reasons as to why particular techniques work. It also
helps to integrate aspects of geometrical work (loci,
properties of shapes, construction techniques) into a
more powerful body of mathematics.

3 Integration of aspects of geometry with
other areas of mathematics such as algebra
and handling data

At Key Stage 4 pupils encounter quadratic functions in
Ma2 Number and algebra. They also develop further
ideas of construction, locus and coordinates in Ma3
Shape, space and measures. In Ma4 Handling data they
collect data and represent it graphically. There are a
number of familiar physical objects which appear to
exhibit quadratic shape (i.e. that of a parabola) or its 3-D
equivalent. These include bridges, bent rulers and
satellite receiver dishes. Using modern technology
images can be easily captured from the Internet, from
photographs, or on digital cameras. Even without such
technology curves can be traced and coordinates read
off from a suitable grid.

A

B CD E
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G
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The locus examples above can be extended to
considering the path of an object which moves such
that its distance from a fixed point is the same as that
from a fixed line. For example in the classroom or
playground a straight wall can be chosen as the fixed
line. Then one pupil, called A, can stand about half way
along the wall and say 2 metres away from it. Now the
class can try to direct another pupil, called B, to move
so that his/her distance from A is the same as his/her
distance (measured perpendicularly) from the wall. In
order to turn this into a construction suitable for use on
paper, or with computer software, suppose C is any
point on the wall. We need to construct the point B
such that AB = BC. But we also know that B must lie on
the perpendicular to the wall at C. Now if ABC is to be
an isosceles triangle then we know that the
perpendicular bisector of its base AC must pass
through the vertex at A. Hence we just need to find the
intersection of the perpendicular bisector of AC with
the perpendicular to the wall at C. Now by taking
several positions of C (or just by ̀ dragging’ C using
dynamic geometry software) we can find the locus of B.

Using sophisticated language we can see that in the
above construction the line (directrix) has been replaced
by a line segment. This is the domain of the
independent variable C. The distance of the point A
(focus) from the wall is a parameter of the problem. The
point B has been defined by constructions using the
points A, C and the wall so that it is a dependent
variable, and by letting C track through its domain we
can find its locus with respect to C. So through
geometry we can create images of functional
relationships.

If we now take the wall as the x-axis, and its
perpendicular through A (0, 2a) as the y-axis we can
give the point B the coordinates (x,y) and use
Pythagoras’s theorem to find a relationship between
them. The origin O (0,0) is the point on the wall nearest
A. Let D be the point on BC so that AD is parallel to the
wall. Then in the right angled triangled triangle ADB
we have AD = x , DB = y - 2a and AB = BC = y . Hence
we have y2 = x2 + (y - 2a)2 , which simplifies to: y = x2/4a
+ a , showing it is a quadratic function. We can also
interpret the geometrical effects on the graph of   y = x2

of multiplying by a factor (1/4a) and adding the
constant a.

It also appears from the diagram that the perpendicular
bisector of AC is a tangent to the parabola at B.
Assuming this to be the case it is straightforward to
derive the reflecting property of parabolas used in
optical telescopes, and parabolic satellite dishes. Note:
the lack of feasibility of a proof at this stage need not
deter us from engaging with the activity. However, it is
important not to gloss over such gaps in the logic but to
emphasise them as unfinished business which will need
to be resolved if the theory is to be watertight. At A-
level the result can be proved using calculus to find the
equation of the tangent to the parabola at B. 

Another example uses an image as a source of data.
Below there is a photograph of Sydney Harbour bridge.
Tracing paper could be used to run over any of the
curved sections from which coordinates could be read
manually. Another way is to scan the photograph, or
use a digital camera, to capture the image in picture
editor software. As the cursor moves over the image a
read-out of pixel coordinates is obtained automatically
in the bottom right of the display.
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Of course the data are from an arbitrary origin and
measured in pretty ghastly units. Data have been
sampled for 15 of the 32 points where the vertical struts
meet the lower front curved girder - which looks fairly
like a parabola. The data can be transformed and
displayed as a scattergram. A quadratic model can then
be fitted by eye. For example, using a graphical 

calculator the data can be entered into lists L1 and L2.
To transform the coordinates relative to an origin at the
bottom left corner, which has pixel coordinates (0,721),
721-L2 can be stored in L3. Coordinates can be rescaled
into units of, say, 100 pixels by storing L1/100 in L4 and
L3/100 in L5. The scatterplot of L4 against L5 can then
be drawn and quadratic functions superimposed by eye.
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x 58 152 252 348 440 533 627 725 817 918 1020 1122 1236 1285 1349
y 484 411 352 304 268 244 232 228 236 255 286 330 386 420 461

Many data handling packages, and graphical calculators, also provide the means of fitting models automatically. For
example, quadratic regression gives a very good fit!

The table below shows the coordinates for a selection of points on the front lower curved arch.



But it is also a nice exercise in algebra to equate the
polynomial in the form: ax2 + bx + c with that in the
form: p(x - q)2 + r
This latter form is more convenient for modelling, and
gives a live example of the general idea of
transformations of functions f(x) in the form: pf(qx + r) +
s. (Of course the transformation from ax2 + bx + c to p(x
- q)2 + r is also the fundamental step in deriving the
formula for the solution of a quadratic equation.)

Returning to the geometry, we note that here it is
essential to get the aspect ratio right if the graph is in
any way to match the photo! A nice exercise is to try to
estimate the size of the new units in metres - zooming in
on the original photo reveals a party of walkers nearing
the flag at the top of the highest girder!  Alternatively
some research can be conducted, perhaps using the
Internet, to find the span of the Sydney Harbour bridge.
If we defined a measure called the ‘bulge ratio’, say, as b
= (max(L5) - min(L5))/(max(L4) - min(L4)) - do you think
that b is about the same (0.2) for all bridges of this type?

Try it on photographs of other bridges such as that
across the Tyne in Newcastle. What about the cables on
a suspension bridge - do they look like parabolas? Do
they have a constant ‘sag ratio’?

We can relate the image directly to geometric
constructions, to test how well a parabola, or other curve,
fits the bridge’s shape. Here the image is pasted into a
dynamic geometry package. Key points A, B and C are
identified on the bridge. A and C are where the road
meets the arch under question, and B is the highest point
of the arch. The perpendicular through B to AC is
constructed and F is taken as any point on it, (as in the next
figure). D is the reflection of F in the line through B parallel
to AC, and GH is part of the line parallel to AC through D.
P is any point of GH. The perpendicular bisector of PF
meets the perpendicular to GH at P in the point Q.  The
locus of Q as P varies is a parabola. F is the unique ̀control
point’ and as this is slid up and down so the shape of the
parabola alters dynamically. There is only one position of F
for which the parabola passes through A and C
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An alternative geometric model for the curved arch
could just be a circular arc through A, B and C - how
would you find its centre? Can you detect any visible
difference between the parabolic and circular models?
Some mathematical analysis, as well as further images,
can be found at http://www.brantacan.co.uk/ and
many other images at: http://architecture.about.com/
arts/architecture/ 

4 Integrating aspects of geometry with other
subjects such as science, history and art

The 1996 OECD publication, Changing the subject:
innovations in science, mathematics and technology
education, contains accounts of a number of innovative
projects in mathematics and science. An American
project sought to integrate ideas in mathematics and
science with the real world. Their basic tenet was that if
they could not explain to students in the first lesson on a
new subject why they were about to study it, then it had
to be deleted from the curriculum. Sadly that project
team could not find a suitable justification for teaching
about conics, such as the parabola and ellipse, and so

axed them from the course! In the examples above we
have described one major reason for investigating
parabolas and quadratics. Developments in optics, and
the significance of the invention of the reflecting
telescope, right up to the current interest in the Hubble
telescope, are matters of considerable interest not only
in science, but also in the history of ideas and now in the
reality of mass worldwide communications. The
contribution of people such as Galileo, Kepler and
Newton to our understanding of cosmology and gravity
are important aspects of a general education. That their
work led to mathematical models such as the elliptic
orbits of the planets around the Sun and the parabolic
trajectory of a bullet from a gun are also important
aspects of education.

The discovery of the laws of perspective in renaissance
art and architecture is another source of productive
links between mathematics, art and history. There are
good materials on which to base such work, such as
those produced for the Royal Institution’s
masterclasses by Sir Christopher Zeeman, (see
Appendix 11), and the book by Dr JV Field referenced
in Appendix 14.
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tasks covering a range of mathematics, including geometry);
Logic Geometry Problems; Blueprint for Geometry
(designing and building a scale model of a house); Designing
Playgrounds; By Nature’s Design (geometry in nature);
Structures: The Way Things Are Built; Designing
Environments; The Mind’s Eye: Imagery in Everyday Life.
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Education

Survey of science technicians in schools and col-
leges (72 page document 17/01, July 2001 ISBN 0
85403 566 4. 2 page summary 18/01 also available.)

Acclaim: exploring the lives of leading scientists
(112 page curriculum resource pack and 120 minute
video for teachers and 11-16 year olds, April 2001,
£12.50 ISBN 0 863 39925 8. 
See www.acclaimscientists.org.uk)

Discoveries in time (12 page resource for teachers
and post-16 students on biological clocks and the
measurement of time, December 2000 
ISBN 0 85403 551 6)

The science National Curriculum (3 page statement
13/99, July 1999)

The teaching profession (6 page statement 4/99,
April 1999)

Science and the revision of the National
Curriculum (3 page statement 1/99, January 1999)

Mathematics education pre-19 (4 page statement,
May 1998)

Teaching and learning algebra pre-19 (72 page
report of a Royal Society / JMC working group, July
1997; 4 page summary also available)

Copies of education publications can be obtained
from:
Education Department, The Royal Society,
6 Carlton House Terrace, London SW1Y 5AG

Science policy reports

The role of land carbon sinks in mitigating global
climate change (36 page document 10/01, July 2001
ISBN 0 85403 561 3)

Stem cells research-second update (4 page
response to the inquiry by the House of Lords Science
and Technology Committee 09/01, June 2001 ISBN 0
85403 560 5)

Transmissible spongiform encephlopathies (11
page statement 08/01, June 2001)

The health hazards of depleted uranium muni-
tions, Part 1 (88 page document 06/01, May 2001,
£17.50 ISBN 0 85403 3540; 2 page summary available
free of charge.)

The use of genetically modified animals (46 page
document 05/01, 21 May 2001, ISBN 0 85403 556 7)

The Science of Climate Change (2 page joint state-
ment from 16 scientific academies, May 2001)

Genetics and Insurance (4-page response to the
inquiry by the House of Commons Science and
Technology Committee, 03/01, March 2001)

The future of Sites of Special Scientific Interest
(SSSIs) (21 page document, 01/01, February, ISBN 0
85403 5524)

Stem cell research and therapeutic cloning: an
update (8 page document, 12/00, November 2000,
ISBN 0 85403 5494)

Transgenic plants in world agriculture (19 page
report, 08/00, July 2000, ISBN 0 85403 5443)

Measures for controlling the threat from biologi-
cal weapons (19 page report, 04/00, July 2000, ISBN
0 85403 5400)

Endocrine disrupting chemicals (16 page report
06/00, June 2000, ISBN 0 85403 5435)

Copies of science advice reports can be obtained from:
Science Advice Section, The Royal Society,
6 Carlton House Terrace, London SW1Y 5AG

A selection of other Royal Society reports and publications

The full text, or summary, of these reports can be found on the Royal Society’s web site at www.royalsoc.ac.uk



For further information contact:
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ISBN 0 85403 563 X

Founded in 1660, the Royal Society 
is the independent scientific academy 
of the UK, dedicated to promoting
excellence in science

Registered Charity No 207043

Printed by Holbrooks Printers Ltd Norway Road Hilsea Portsmouth Hants PO3 5HX

The Royal Society

The Royal Society is the world’s oldest scientific academy in continuous exis-
tence, having been at the forefront of enquiry and discovery since its foun-
dation in 1660. The backbone of the Society is its Fellowship of the most
eminent scientists of the day elected by peer review for life and entitled to
use FRS after their name. Throughout its history, the Society has promoted
excellence in science through its Fellowship, which has included Isaac
Newton, Charles Darwin, Ernest Rutherford, Albert Einstein, Dorothy
Hodgkin, Francis Crick, James Watson and Stephen Hawking. The Society is
independent of government, as it has been throughout its existence, by
virtue of its Royal Charters. The objectives of the Royal Society are to:

• recognise excellence in science;
• support leading-edge scientific research and its applications;
• stimulate international interaction;
• promote education and the public’s understanding of science;
• further the role of science, engineering and technology in society;
• provide independent authoritative advice on matters relating to science,

engineering and technology;
• encourage research into the history of science.

The Joint Mathematical Council

The Joint Mathematical Council of the United Kingdom was established in
1963. The Council aims to facilitate communication between its participat-
ing societies and to promote mathematics and the improvement of the
teaching of mathematics at all levels. In pursuance of these aims, the JMC
serves as a forum for discussions between its societies. It makes representa-
tions to government and other bodies and formulates responses to their
enquiries. The JMC is concerned with all aspects of mathematics, from pri-
mary to higher education.

JMC
The Joint Mathematical Council 
of the United Kingdom


